1. ,Hangzhou,China
2. ,Hangzhou,China
3. ,Shanghai,China
4. ,Shanghai,China
扫 描 看 全 文
Advances in swept-source optical coherence tomography and optical coherence tomography angiography[J]. 眼科实践与研究新进展, 2023,3(2):67-79.
Fang Zheng, Xiaofeng Deng, Qi Zhang, et al. Advances in swept-source optical coherence tomography and optical coherence tomography angiography[J]. AOPR, 2023,3(2):67-79.
Advances in swept-source optical coherence tomography and optical coherence tomography angiography[J]. 眼科实践与研究新进展, 2023,3(2):67-79. DOI: 10.1016/j.aopr.2022.10.005.
Fang Zheng, Xiaofeng Deng, Qi Zhang, et al. Advances in swept-source optical coherence tomography and optical coherence tomography angiography[J]. AOPR, 2023,3(2):67-79. DOI: 10.1016/j.aopr.2022.10.005.
Background,The fast development of swept-source optical coherence tomography (SS-OCT) and swept-source optical coherence tomography angiography (SS-OCTA) enables both anterior and posterior imaging of the eye. These techniques have evolved from a research tool to an essential clinical imaging modality.,Main text,The longer wavelength and faster speed of SS-OCT and SS-OCTA facilitate better visualization of structure and vasculature below pigmented tissue with a larger field of view of the posterior segment and 360-degree visualization of the anterior segment. In the past 10 years, algorithms dealing with OCT and OCTA data also vastly improved the image quality and enabled the automated quantification of OCT- and OCTA-derived metrics. This technology has enriched our current understanding of healthy and diseased eyes. Even though the high cost of the systems currently limited the widespread use of SS-OCT and SS-OCTA at the first beginning, the gap between research and clinic practice got obviously shortened in the past few years.,Conclusions,SS-OCT and SS-OCTA will continue to evolve rapidly, contributing to a paradigm shift toward more widespread adoption of new imaging technology in clinical practice.
Background,The fast development of swept-source optical coherence tomography (SS-OCT) and swept-source optical coherence tomography angiography (SS-OCTA) enables both anterior and posterior imaging of the eye. These techniques have evolved from a research tool to an essential clinical imaging modality.,Main text,The longer wavelength and faster speed of SS-OCT and SS-OCTA facilitate better visualization of structure and vasculature below pigmented tissue with a larger field of view of the posterior segment and 360-degree visualization of the anterior segment. In the past 10 years, algorithms dealing with OCT and OCTA data also vastly improved the image quality and enabled the automated quantification of OCT- and OCTA-derived metrics. This technology has enriched our current understanding of healthy and diseased eyes. Even though the high cost of the systems currently limited the widespread use of SS-OCT and SS-OCTA at the first beginning, the gap between research and clinic practice got obviously shortened in the past few years.,Conclusions,SS-OCT and SS-OCTA will continue to evolve rapidly, contributing to a paradigm shift toward more widespread adoption of new imaging technology in clinical practice.
Swept-source optical coherence tomographySwept-source optical coherence tomography angiographyAnterior segmentVitreousPosterior segment
1 D Huang, EA Swanson, CP Lin, et al.Optical coherence tomography Science, 254 (5035) (1991), pp. 1178-1181, 10.1126/science.1957169
2 B White, M Pierce, N Nassif, et al.In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical coherence tomography Opt Express, 11 (25) (2003), pp. 3490-3497, 10.1364/oe.11.003490
3 B Potsaid, B Baumann, D Huang, et al.Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second Opt Express, 18 (19) (2010), pp. 20029-20048, 10.1364/OE.18.020029
4 R Leitgeb, C Hitzenberger, A FercherPerformance of fourier domain vs. time domain optical coherence tomography Opt Express, 11 (8) (2003), pp. 889-894, 10.1364/oe.11.000889
5 JF de Boer, B Cense, BH Park, et al.Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography Opt Lett, 28 (21) (2003), pp. 2067-2069, 10.1364/ol.28.002067
6 M WojtkowskiHigh-speed optical coherence tomography: basics and applications Appl Opt, 49 (16) (2010), pp. D30-D61, 10.1364/AO.49.000D30
7 TS Kim, J Joo, I Shin, et al.9.4 MHz A-line rate optical coherence tomography at 1300 nm using a wavelength-swept laser based on stretched-pulse active mode-locking Sci Rep, 10 (1) (2020), p. 9328, 10.1038/s41598-020-66322-0
8 CD Lu, NK Waheed, A Witkin, et al.Microscope-integrated intraoperative ultrahigh-speed swept-source optical coherence tomography for widefield retinal and anterior segment imaging Ophthalmic Surg Lasers Imaging Retina, 49 (2) (2018), pp. 94-102, 10.3928/23258160-20180129-03
9 P Li, Y Cheng, P Li, et al.Hybrid averaging offers high-flow contrast by cost apportionment among imaging time, axial, and lateral resolution in optical coherence tomography angiography Opt Lett, 41 (17) (2016), pp. 3944-3947, 10.1364/OL.41.003944
10 Y Cheng, L Guo, C Pan, et al.Statistical analysis of motion contrast in optical coherence tomography angiography J Biomed Opt, 20 (11) (2015), Article 116004, 10.1117/1.JBO.20.11.116004
11 WJ Choi, R Reif, S Yousefi, et al.Improved microcirculation imaging of human skin in vivo using optical microangiography with a correlation mapping mask J Biomed Opt, 19 (3) (2014), Article 36010, 10.1117/1.JBO.19.3.036010
12 Y Jia, O Tan, J Tokayer, et al.Split-spectrum amplitude-decorrelation angiography with optical coherence tomography Opt Express, 20 (4) (2012), pp. 4710-4725, 10.1364/OE.20.004710
13 J Enfield, E Jonathan, M LeahyIn vivo imaging of the microcirculation of the volar forearm using correlation mapping optical coherence tomography (cmOCT) Biomed Opt Express, 2 (5) (2011), pp. 1184-1193, 10.1364/BOE.2.001184
14 L Huang, Y Fu, R Chen, et al.SNR-adaptive OCT angiography enabled by statistical characterization of intensity and decorrelation with multi-variate time series model IEEE Trans Med Imag, 38 (11) (2019), pp. 2695-2704, 10.1109/TMI.2019.2910871
15 H Li, K Liu, T Cao, et al.High performance OCTA enabled by combining features of shape, intensity, and complex decorrelation Opt Lett, 46 (2) (2021), pp. 368-371, 10.1364/OL.405751
16 K Liu, T Zhu, L Yao, et al.Noninvasive OCT angiography-based blood attenuation measurements correlate with blood glucose level in the mouse retina Biomed Opt Express, 12 (8) (2021), pp. 4680-4688, 10.1364/BOE.430104
17 Y Zhang, H Li, T Cao, et al.Automatic 3D adaptive vessel segmentation based on linear relationship between intensity and complex-decorrelation in optical coherence tomography angiography Quant Imag Med Surg, 11 (3) (2021), pp. 895-906, 10.21037/qims-20-868
18 R Chen, L Yao, K Liu, et al.Improvement of decorrelation-based OCT angiography by an adaptive spatial-temporal kernel in monitoring stimulus-evoked hemodynamic responses IEEE Trans Med Imag, 39 (12) (2020), pp. 4286-4296, 10.1109/TMI.2020.3016334
19 W Choi, EM Moult, NK Waheed, et al.Ultrahigh-speed, swept-source optical coherence tomography angiography in nonexudative age-related macular degeneration with geographic atrophy Ophthalmology, 122 (12) (2015), pp. 2532-2544, 10.1016/j.ophtha.2015.08.029
20 RK Wang, Q Zhang, Y Li, et al.Optical coherence tomography angiography-based capillary velocimetry J Biomed Opt, 22 (6) (2017), Article 66008, 10.1117/1.JBO.22.6.066008
21 Y Li, W Wei, RK WangCapillary flow homogenization during functional activation revealed by optical coherence tomography angiography based capillary velocimetry Sci Rep, 8 (1) (2018), p. 4107, 10.1038/s41598-018-22513-4
22 P Arriola-Villalobos, JI Fernandez-Vigo, D Diaz-Valle, et al.Lower tear meniscus measurements using a new anterior segment swept-source optical coherence tomography and agreement with fourier-domain optical coherence tomography Cornea, 36 (2) (2017), pp. 183-188, 10.1097/ICO.0000000000001086
23 R Fukuda, T Usui, T Miyai, et al.Tear meniscus evaluation by anterior segment swept-source optical coherence tomography Am J Ophthalmol, 155 (4) (2013), pp. 620-624, 10.1016/j.ajo.2012.11.009 624 e621-622
24 B Bolek, A Wylegala, S Teper, et al.Treatment of conjunctival papilloma with topical interferon alpha-2b - case report Medicine (Baltim), 99 (7) (2020), Article e19181, 10.1097/MD.0000000000019181
25 M Dembski, A Nowinska, K Ulfik-Dembska, et al.Swept source optical coherence tomography analysis of the selected eye’s anterior segment parameters J Clin Med, 10 (5) (2021), 10.3390/jcm10051094
26 JY Han, DC Lee, SY LeeHorizontal extraocular muscle and scleral anatomy in children: a swept-source anterior segment optical coherence tomography study Kor J Ophthalmol, 32 (2) (2018), pp. 83-88, 10.3341/kjo.2017.0034
27 A Invernizzi, S Marchi, R Aldigeri, et al.Objective quantification of anterior chamber inflammation: measuring cells and flare by anterior segment optical coherence tomography Ophthalmology, 124 (11) (2017), pp. 1670-1677, 10.1016/j.ophtha.2017.05.013
28 M Kumar, R Shetty, C Jayadev, et al.Comparability and repeatability of pachymetry in keratoconus using four noncontact techniques Indian J Ophthalmol, 63 (9) (2015), pp. 722-727, 10.4103/0301-4738.170987
29 J Steinberg, MK Casagrande, A Frings, et al.Screening for subclinical keratoconus using swept-source fourier domain anterior segment optical coherence tomography Cornea, 34 (11) (2015), pp. 1413-1419, 10.1097/ICO.0000000000000568
30 Y Esaka, T Kojima, M Dogru, et al.Prediction of best-corrected visual acuity with swept-source optical coherence tomography parameters in keratoconus Cornea, 38 (9) (2019), pp. 1154-1160, 10.1097/ICO.0000000000002043
31 E Szalai, G Nemeth, Z Hassan, et al.Noncontact evaluation of corneal grafts: swept-source fourier domain OCT versus high-resolution Scheimpflug imaging Cornea, 36 (4) (2017), pp. 434-439, 10.1097/ICO.0000000000001133
32 F Arnalich-Montiel, S Ortiz-Toquero, C Auladell, et al.Accuracy of corneal thickness by swept-source optical coherence tomography and Scheimpflug camera in virgin and treated Fuchs endothelial dystrophy Cornea, 37 (6) (2018), pp. 727-733, 10.1097/ICO.0000000000001530
33 M Satue, M Idoipe, A Sanchez-Perez, et al.Evaluation of early graft detachment after Descemet membrane endothelial keratoplasty using new swept-source optical coherence tomography Cornea, 35 (10) (2016), pp. 1279-1284, 10.1097/ICO.0000000000000925
34 C Ye, M Yu, V JhanjiStromal bed thickness measurement during laser in situ keratomileusis using intraoperative optical coherence tomography Cornea, 34 (4) (2015), pp. 387-391, 10.1097/ICO.0000000000000345
35 C Georgeon, I Marciano, R Cuyaubere, et al.Corneal and epithelial thickness mapping: comparison of swept-source- and spectral-domain-optical coherence tomography J Ophthalmol, 2021 (2021), Article 3444083, 10.1155/2021/3444083
36 A Gupta, D Ruminski, A Jimenez Villar, et al.In vivo SS-OCT imaging of crystalline lens sutures Biomed Opt Express, 11 (10) (2020), pp. 5388-5400, 10.1364/BOE.401254
37 Z Li, Z Zhu, X Li, et al.Age-related changes in crystalline lens tilt and decentration: swept-source OCT study J Cataract Refract Surg, 47 (10) (2021), pp. 1290-1295, 10.1097/j.jcrs.0000000000000632
38 A de Castro, A Benito, S Manzanera, et al.Three-dimensional cataract crystalline lens imaging with swept-source optical coherence tomography Invest Ophthalmol Vis Sci, 59 (2) (2018), pp. 897-903, 10.1167/iovs.17-23596
39 JEG Bras, W Sickenberger, N Hirnschall, et al.Cataract quantification using swept-source optical coherence tomography J Cataract Refract Surg, 44 (12) (2018), pp. 1478-1481, 10.1016/j.jcrs.2018.08.009
40 N Hirnschall, T Buehren, F Bajramovic, et al.Prediction of postoperative intraocular lens tilt using swept-source optical coherence tomography J Cataract Refract Surg, 43 (6) (2017), pp. 732-736, 10.1016/j.jcrs.2017.01.026
41 Q Lu, W He, D Qian, et al.Measurement of crystalline lens tilt in high myopic eyes before cataract surgery using swept-source optical coherence tomography Eye Vis (Lond)., 7 (2020), p. 14, 10.1186/s40662-020-00176-5
42 R Tu, J Yu, G Savini, et al.Agreement between two optical biometers based on large coherence length SS-OCT and Scheimpflug imaging/partial coherence interferometry J Refract Surg, 36 (7) (2020), pp. 459-465, 10.3928/1081597X-20200420-02
43 I Grulkowski, JJ Liu, JY Zhang, et al.Reproducibility of a long-range swept-source optical coherence tomography ocular biometry system and comparison with clinical biometers Ophthalmology, 120 (11) (2013), pp. 2184-2190, 10.1016/j.ophtha.2013.04.007
44 Y Qiao, C Tan, M Zhang, et al.Comparison of spectral domain and swept source optical coherence tomography for angle assessment of Chinese elderly subjects BMC Ophthalmol, 19 (1) (2019), p. 142, 10.1186/s12886-019-1145-7
45 W Huang, X Li, X Gao, et al.The anterior and posterior biometric characteristics in primary angle-closure disease: data based on anterior segment optical coherence tomography and swept-source optical coherence tomography Indian J Ophthalmol, 69 (4) (2021), pp. 865-870, 10.4103/ijo.IJO_936_20
46 A Pujari, S Yadav, N Sharma, et al.Study 1: evaluation of the signs of deficient posterior capsule in posterior polar cataracts using anterior segment optical coherence tomography J Cataract Refract Surg, 46 (9) (2020), pp. 1260-1265, 10.1097/j.jcrs.0000000000000246
47 N Porporato, M Baskaran, TA Tun, et al.Assessment of circumferential angle closure with swept-source optical coherence tomography: a community based study Am J Ophthalmol, 199 (2019), pp. 133-139, 10.1016/j.ajo.2018.11.015
48 M Baskaran, SW Ho, TA Tun, et al.Assessment of circumferential angle-closure by the iris-trabecular contact index with swept-source optical coherence tomography Ophthalmology, 120 (11) (2013), pp. 2226-2231, 10.1016/j.ophtha.2013.04.020
49 PJ Foster, JG Devereux, PH Alsbirk, et al.Detection of gonioscopically occludable angles and primary angle closure glaucoma by estimation of limbal chamber depth in Asians: modified grading scheme Br J Ophthalmol, 84 (2) (2000), pp. 186-192, 10.1136/bjo.84.2.186
50 R Lavanya, TY Wong, DS Friedman, et al.Determinants of angle closure in older Singaporeans Arch Ophthalmol, 126 (5) (2008), pp. 686-691, 10.1001/archopht.126.5.686
51 ME Nongpiur, LM Sakata, DS Friedman, et al.Novel association of smaller anterior chamber width with angle closure in Singaporeans Ophthalmology, 117 (10) (2010), pp. 1967-1973, 10.1016/j.ophtha.2010.02.007
52 X Li, W Wang, W Huang, et al.Difference of uveal parameters between the acute primary angle closure eyes and the fellow eyes Eye, 32 (7) (2018), pp. 1174-1182, 10.1038/s41433-018-0056-9
53 ME Nongpiur, M He, N Amerasinghe, et al.Lens vault, thickness, and position in Chinese subjects with angle closure Ophthalmology, 118 (3) (2011), pp. 474-479, 10.1016/j.ophtha.2010.07.025
54 M Pekmezci, TC Porco, SC LinAnterior segment optical coherence tomography as a screening tool for the assessment of the anterior segment angle Ophthalmic Surg Laser Imag, 40 (4) (2009), pp. 389-398, 10.3928/15428877-20096030-07
55 LM Sakata, R Lavanya, DS Friedman, et al.Comparison of gonioscopy and anterior segment ocular coherence tomography in detecting angle closure in different quadrants of the anterior chamber angle Ophthalmology, 115 (5) (2008), pp. 769-774, 10.1016/j.ophtha.2007.06.030
56 N Porporato, M Baskaran, TA Tun, et al.Understanding diagnostic disagreement in angle closure assessment between anterior segment optical coherence tomography and gonioscopy Br J Ophthalmol, 104 (6) (2020), pp. 795-799, 10.1136/bjophthalmol-2019-314672
57 M Baskaran, JV Iyer, AK Narayanaswamy, et al.Anterior segment imaging predicts incident gonioscopic angle closure Ophthalmology, 122 (12) (2015), pp. 2380-2384, 10.1016/j.ophtha.2015.07.030
58 I Lai, H Mak, G Lai, et al.Anterior chamber angle imaging with swept-source optical coherence tomography: measuring peripheral anterior synechia in glaucoma Ophthalmology, 120 (6) (2013), pp. 1144-1149, 10.1016/j.ophtha.2012.12.006
59 Y Dai, S Zhang, M Shen, et al.Identification of peripheral anterior synechia with anterior segment optical coherence tomography Graefes Arch Clin Exp Ophthalmol, 259 (9) (2021), pp. 2753-2759, 10.1007/s00417-021-05220-1
60 Y Loo, TA Tun, EN Vithana, et al.Association of peripheral anterior synechiae with anterior segment parameters in eyes with primary angle closure glaucoma Sci Rep, 11 (1) (2021), Article 13906, 10.1038/s41598-021-93293-7
61 TA Tun, M Baskaran, SA Perera, et al.Swept-source optical coherence tomography assessment of iris-trabecular contact after phacoemulsification with or without goniosynechialysis in eyes with primary angle closure glaucoma Br J Ophthalmol, 99 (7) (2015), pp. 927-931, 10.1136/bjophthalmol-2014-306223
62 PK Roberts, DA Goldstein, AA FawziAnterior segment optical coherence tomography angiography for identification of Iris vasculature and staging of Iris neovascularization: a pilot study Curr Eye Res, 42 (8) (2017), pp. 1136-1142, 10.1080/02713683.2017.1293113
63 AH Skalet, Y Li, CD Lu, et al.Optical coherence tomography angiography characteristics of Iris melanocytic tumors Ophthalmology, 124 (2) (2017), pp. 197-204, 10.1016/j.ophtha.2016.10.003
64 M Ang, K Devarajan, AC Tan, et al.Anterior segment optical coherence tomography angiography for iris vasculature in pigmented eyes Br J Ophthalmol, 105 (7) (2021), pp. 929-934, 10.1136/bjophthalmol-2020-316930
65 HC Kose, K Gunduz, MB HosalIris cysts: clinical features, imaging findings, and treatment results Turk J Ophthalmol, 50 (1) (2020), pp. 31-36, 10.4274/tjo.galenos.2019.20633
66 R D’Aloisio, P Viggiano, E Borrelli, et al.Changes in Iris perfusion following scleral buckle surgery for rhegmatogenous retinal detachment: an anterior segment optical coherence tomography angiography (AS-OCTA) study J Clin Med, 9 (4) (2020), 10.3390/jcm9041231
67 JJ Liu, AJ Witkin, M Adhi, et al.Enhanced vitreous imaging in healthy eyes using swept source optical coherence tomography PLoS One, 9 (7) (2014), Article e102950, 10.1371/journal.pone.0102950
68 H Itakura, S Kishi, D Li, et al.Observation of posterior precortical vitreous pocket using swept-source optical coherence tomography Invest Ophthalmol Vis Sci, 54 (5) (2013), pp. 3102-3107, 10.1167/iovs.13-11769
69 D Li, S Kishi, H Itakura, et al.Posterior precortical vitreous pockets and connecting channels in children on swept-source optical coherence tomography Invest Ophthalmol Vis Sci, 55 (4) (2014), pp. 2412-2416, 10.1167/iovs.14-13967
70 BCS Leong, S Fragiotta, TR Kaden, et al.OCT en face analysis of the posterior vitreous reveals topographic relationships among premacular bursa, prevascular fissures, and cisterns Ophthalmol Retina, 4 (1) (2020), pp. 84-89, 10.1016/j.oret.2019.09.002
71 H Itakura, S Kishi, D Li, et al.Vitreous changes in high myopia observed by swept-source optical coherence tomography Invest Ophthalmol Vis Sci, 55 (3) (2014), pp. 1447-1452, 10.1167/iovs.13-13496
72 MD Wang, C Truong, Z Mammo, et al.Swept source optical coherence tomography compared to ultrasound and biomicroscopy for diagnosis of posterior vitreous detachment Clin Ophthalmol, 15 (2021), pp. 507-512, 10.2147/OPTH.S297307
73 JA Kraker, JE Kim, EC Koller, et al.Standard 6-mm compared with widefield 16.5-mm OCT for staging of posterior vitreous detachment Ophthalmol Retina, 4 (11) (2020), pp. 1093-1102, 10.1016/j.oret.2020.05.006
74 M Tsukahara, K Mori, PL Gehlbach, et al.Posterior vitreous detachment as observed by wide-angle OCT imaging Ophthalmology, 125 (9) (2018), pp. 1372-1383, 10.1016/j.ophtha.2018.02.039
75 Y Chiku, T Hirano, Y Takahashi, et al.Evaluating posterior vitreous detachment by widefield 23-mm swept-source optical coherence tomography imaging in healthy subjects Sci Rep, 11 (1) (2021), Article 19754, 10.1038/s41598-021-99372-z
76 K Hayashi, T Sato, SI Manabe, et al.Sex-related differences in the progression of posterior vitreous detachment with age Ophthalmol Retina, 3 (3) (2019), pp. 237-243, 10.1016/j.oret.2018.10.017
77 K Xiong, X Gong, W Li, et al.Comparison of macular thickness measurements using swept-source and spectral-domain optical coherence tomography in healthy and diabetic subjects Curr Eye Res, 46 (10) (2021), pp. 1567-1573, 10.1080/02713683.2021.1908566
78 SY Lee, HW Bae, HJ Kwon, et al.Repeatability and agreement of swept source and spectral domain optical coherence tomography evaluations of thickness sectors in normal eyes J Glaucoma, 26 (2) (2017), pp. e46-e53, 10.1097/IJG.0000000000000536
79 M Eastline, MR Munk, S Wolf, et al.Repeatability of wide-field optical coherence tomography angiography in normal retina Transl Vis Sci Technol, 8 (3) (2019), p. 6, 10.1167/tvst.8.3.6
80 D Fang, FY Tang, H Huang, et al.Repeatability, interocular correlation and agreement of quantitative swept-source optical coherence tomography angiography macular metrics in healthy subjects Br J Ophthalmol, 103 (3) (2019), pp. 415-420, 10.1136/bjophthalmol-2018-311874
81 JI Fernandez-Vigo, B Kudsieh, H Shi, et al.Normative database and determinants of macular vessel density measured by optical coherence tomography angiography Clin Exp Ophthalmol, 48 (1) (2020), pp. 44-52, 10.1111/ceo.13648
82 K Kim, J You, JR ParkQuantification of retinal microvascular parameters by severity of diabetic retinopathy using wide-field swept-source optical coherence tomography angiography Graefes Arch Clin Exp Ophthalmol, 259 (8) (2021), pp. 2103-2111, 10.1007/s00417-021-05099-y
83 C Wen, C Pei, X Xu, et al.Influence of axial length on parafoveal and peripapillary metrics from swept source optical coherence tomography angiography Curr Eye Res, 44 (9) (2019), pp. 980-986, 10.1080/02713683.2019.1607393
84 A Fujiwara, Y Morizane, M Hosokawa, et al.Factors affecting foveal avascular zone in healthy eyes: an examination using swept-source optical coherence tomography angiography PLoS One, 12 (11) (2017), Article e0188572, 10.1371/journal.pone.0188572
85 WB Wei, L Xu, JB Jonas, et al.Subfoveal choroidal thickness: the beijing eye study Ophthalmology, 120 (1) (2013), pp. 175-180, 10.1016/j.ophtha.2012.07.048
86 J Ruiz-Medrano, I Flores-Moreno, P Pena-Garcia, et al.Macular choroidal thickness profile in a healthy population measured by swept-source optical coherence tomography Invest Ophthalmol Vis Sci, 55 (6) (2014), pp. 3532-3542, 10.1167/iovs.14-13868
87 M Hirata, A Tsujikawa, A Matsumoto, et al.Macular choroidal thickness and volume in normal subjects measured by swept-source optical coherence tomography Invest Ophthalmol Vis Sci, 52 (8) (2011), pp. 4971-4978, 10.1167/iovs.11-7729
88 S Touhami, E Philippakis, S Mrejen, et al.Topographic variations of choroidal thickness in healthy eyes on swept-source optical coherence tomography Invest Ophthalmol Vis Sci, 61 (3) (2020), p. 38, 10.1167/iovs.61.3.38
89 J Lu, H Zhou, Y Shi, et al.Interocular asymmetry of choroidal thickness and vascularity index measurements in normal eyes assessed by swept-source optical coherence tomography Quant Imag Med Surg, 12 (1) (2022), pp. 781-795, 10.21037/qims-21-813
90 H Zhou, Y Dai, Y Shi, et al.Age-related changes in choroidal thickness and the volume of vessels and stroma using swept-source OCT and fully automated algorithms Ophthalmol Retina, 4 (2) (2020), pp. 204-215, 10.1016/j.oret.2019.09.012
91 Q Zhang, F Zheng, EH Motulsky, et al.A novel strategy for quantifying choriocapillaris flow voids using swept-source OCT angiography Invest Ophthalmol Vis Sci, 59 (1) (2018), pp. 203-211, 10.1167/iovs.17-22953
92 Q Zhang, Y Shi, H Zhou, et al.Accurate estimation of choriocapillaris flow deficits beyond normal intercapillary spacing with swept source OCT angiography Quant Imag Med Surg, 8 (7) (2018), pp. 658-666, 10.21037/qims.2018.08.10
93 F Zheng, Q Zhang, Y Shi, et al.Age-dependent changes in the macular choriocapillaris of normal eyes imaged with swept-source optical coherence tomography angiography Am J Ophthalmol, 200 (2019), pp. 110-122, 10.1016/j.ajo.2018.12.025
94 R Sacconi, E Borrelli, E Corbelli, et al.Quantitative changes in the ageing choriocapillaris as measured by swept source optical coherence tomography angiography Br J Ophthalmol, 103 (9) (2019), pp. 1320-1326, 10.1136/bjophthalmol-2018-313004
95 M Nassisi, E Baghdasaryan, T Tepelus, et al.Topographic distribution of choriocapillaris flow deficits in healthy eyes PLoS One, 13 (11) (2018), Article e0207638, 10.1371/journal.pone.0207638
96 K Zhou, S Song, Q Zhang, et al.Visualizing choriocapillaris using swept-source optical coherence tomography angiography with various probe beam sizes Biomed Opt Express, 10 (6) (2019), pp. 2847-2860, 10.1364/BOE.10.002847
97 JF Russell, HW Flynn Jr., J Sridhar, et al.Distribution of diabetic neovascularization on ultra-widefield fluorescein angiography and on simulated widefield OCT angiography Am J Ophthalmol, 207 (2019), pp. 110-120, 10.1016/j.ajo.2019.05.031
98 JF Russell, Y Shi, JW Hinkle, et al.Longitudinal wide-field swept-source OCT angiography of neovascularization in proliferative diabetic retinopathy after panretinal photocoagulation Ophthalmol Retina, 3 (4) (2019), pp. 350-361, 10.1016/j.oret.2018.11.008
99 JF Russell, Y Shi, NL Scott, et al.Longitudinal angiographic evidence that intraretinal microvascular abnormalities can evolve into neovascularization Ophthalmol Retina, 4 (12) (2020), pp. 1146-1150, 10.1016/j.oret.2020.06.010
100 Y Cui, Y Zhu, JC Wang, et al.Comparison of widefield swept-source optical coherence tomography angiography with ultra-widefield colour fundus photography and fluorescein angiography for detection of lesions in diabetic retinopathy Br J Ophthalmol, 105 (4) (2021), pp. 577-581, 10.1136/bjophthalmol-2020-316245
101 A Couturier, PA Rey, A Erginay, et al.Widefield OCT-angiography and fluorescein angiography assessments of nonperfusion in diabetic retinopathy and edema treated with anti-vascular endothelial growth factor Ophthalmology, 126 (12) (2019), pp. 1685-1694, 10.1016/j.ophtha.2019.06.022
102 DA Salz, TE de Carlo, M Adhi, et al.Select features of diabetic retinopathy on swept-source optical coherence tomographic angiography compared with fluorescein angiography and normal eyes JAMA Ophthalmol, 134 (6) (2016), pp. 644-650, 10.1001/jamaophthalmol.2016.0600
103 A La Mantia, RA Kurt, S Mejor, et al.Comparing fundus fluorescein angiography and swept-source optical coherence tomography angiography in the evaluation of diabetic macular perfusion Retina, 39 (5) (2019), pp. 926-937, 10.1097/IAE.0000000000002045
104 AY Alibhai, LR De Pretto, EM Moult, et al.Quantification of retinal capillary nonperfusion in diabetics using wide-field optical coherence tomography angiography Retina, 40 (3) (2020), pp. 412-420, 10.1097/IAE.0000000000002403
105 G Ryu, I Kim, M SagongTopographic analysis of retinal and choroidal microvasculature according to diabetic retinopathy severity using optical coherence tomography angiography Graefes Arch Clin Exp Ophthalmol, 259 (1) (2021), pp. 61-68, 10.1007/s00417-020-04785-7
106 Y Cui, Y Zhu, ES Lu, et al.Widefield swept-source OCT angiography metrics associated with the development of diabetic vitreous hemorrhage: a prospective study Ophthalmology, 128 (9) (2021), pp. 1312-1324, 10.1016/j.ophtha.2021.02.020
107 JF Russell, NL Scott, JH Townsend, et al.Wide-field swept-source optical coherence tomography angiography of diabetic tractional retinal detachments before and after surgical repair Retina, 41 (8) (2021), pp. 1587-1596, 10.1097/IAE.0000000000003146
108 M Arya, MB Filho, CB Rebhun, et al.Analyzing relative flow speeds in diabetic retinopathy using variable interscan time analysis OCT angiography Ophthalmol Retina, 5 (1) (2021), pp. 49-59, 10.1016/j.oret.2020.06.024
109 P Song, Y Xu, M Zha, et al.Global epidemiology of retinal vein occlusion: a systematic review and meta-analysis of prevalence, incidence, and risk factors J Glob Health, 9 (1) (2019), Article 010427, 10.7189/jogh.09.010427
110 S Sakimoto, F Gomi, H Sakaguchi, et al.Analysis of retinal nonperfusion using depth-integrated optical coherence tomography images in eyes with branch retinal vein occlusion Invest Ophthalmol Vis Sci, 56 (1) (2015), pp. 640-646, 10.1167/iovs.14-15673
111 A Imai, Y Toriyama, Y Iesato, et al.En face swept-source optical coherence tomography detecting thinning of inner retinal layers as an indicator of capillary nonperfusion Eur J Ophthalmol, 25 (2) (2015), pp. 153-158, 10.5301/ejo.5000514
112 M Moussa, M Leila, AS Bessa, et al.Grading of macular perfusion in retinal vein occlusion using en-face swept-source optical coherence tomography angiography: a retrospective observational case series BMC Ophthalmol, 19 (1) (2019), p. 127, 10.1186/s12886-019-1134-x
113 L Kuehlewein, L An, MK Durbin, et al.Imaging areas of retinal nonperfusion in ischemic branch retinal vein occlusion with swept-source OCT microangiography Ophthalmic Surg Lasers Imaging Retina, 46 (2) (2015), pp. 249-252, 10.3928/23258160-20150213-19
114 S Kakihara, T Hirano, Y Iesato, et al.Extended field imaging using swept-source optical coherence tomography angiography in retinal vein occlusion Jpn J Ophthalmol, 62 (3) (2018), pp. 274-279, 10.1007/s10384-018-0590-9
115 A Shiraki, S Sakimoto, K Tsuboi, et al.Evaluation of retinal nonperfusion in branch retinal vein occlusion using wide-field optical coherence tomography angiography Acta Ophthalmol, 97 (6) (2019), pp. e913-e918, 10.1111/aos.14087
116 E Costanzo, M Parravano, M Gilardi, et al.Microvascular retinal and choroidal changes in retinal vein occlusion analyzed by two different optical coherence tomography angiography devices Ophthalmologica, 242 (1) (2019), pp. 8-15, 10.1159/000496195
117 X Jiang, M Shen, L Wang, et al.Validation of a novel automated algorithm to measure drusen volume and area using swept source optical coherence tomography angiography Transl Vis Sci Technol, 10 (4) (2021), p. 11, 10.1167/tvst.10.4.11
118 KB Schaal, AD Legarreta, WJ Feuer, et al.Comparison between widefield en face swept-source OCT and conventional multimodal imaging for the detection of reticular pseudodrusen Ophthalmology, 124 (2) (2017), pp. 205-214, 10.1016/j.ophtha.2016.10.009
119 J Liu, R Laiginhas, M Shen, et al.Multimodal imaging and en face OCT detection of calcified drusen in eyes with age-related macular degeneration Ophthalmol Sci, 2 (2) (2022), 10.1016/j.xops.2022.100162
120 SR Sadda, R Guymer, FG Holz, et al.Consensus definition for atrophy associated with age-related macular degeneration on OCT: classification of atrophy report 3 Ophthalmology, 125 (4) (2018), pp. 537-548, 10.1016/j.ophtha.2017.09.028
121 RH Guymer, PJ Rosenfeld, CA Curcio, et al.Incomplete retinal pigment epithelial and outer retinal atrophy in age-related macular degeneration: classification of atrophy meeting report 4 Ophthalmology, 127 (3) (2020), pp. 394-409, 10.1016/j.ophtha.2019.09.035
122 Y Shi, J Yang, W Feuer, et al.Persistent hypertransmission defects on en face OCT imaging as a stand-alone precursor for the future formation of geographic atrophy Ophthalmol Retina, 5 (12) (2021), pp. 1214-1225, 10.1016/j.oret.2021.02.004
123 R Laiginhas, Y Shi, M Shen, et al.Persistent hypertransmission defects detected on en face swept source optical computed tomography images predict the formation of geographic atrophy in age-related macular degeneration Am J Ophthalmol, 237 (2022), pp. 58-70, 10.1016/j.ajo.2021.11.001
124 J Liu, R Laiginhas, F Corvi, et al.Diagnosing persistent hypertransmission defects on en face OCT imaging of age-related macular degeneration Ophthalmol Retina, 6 (5) (2022), pp. 387-397, 10.1016/j.oret.2022.01.011
125 M Nassisi, Y Shi, W Fan, et al.Choriocapillaris impairment around the atrophic lesions in patients with geographic atrophy: a swept-source optical coherence tomography angiography study Br J Ophthalmol, 103 (7) (2019), pp. 911-917, 10.1136/bjophthalmol-2018-312643
126 EM Moult, NK Waheed, EA Novais, et al.Swept-source optical coherence tomography angiography reveals choriocapillaris alterations in eyes with nascent geographic atrophy and drusen-associated geographic atrophy Retina, 36 (Suppl 1) (2016), pp. S2-S11, 10.1097/IAE.0000000000001287
127 M Thulliez, Q Zhang, Y Shi, et al.Correlations between choriocapillaris flow deficits around geographic atrophy and enlargement rates based on swept-source OCT imaging Ophthalmol Retina, 3 (6) (2019), pp. 478-488, 10.1016/j.oret.2019.01.024
128 NK Waheed, EM Moult, JG Fujimoto, et al.Optical coherence tomography angiography of dry age-related macular degeneration Dev Ophthalmol, 56 (2016), pp. 91-100, 10.1159/000442784
129 AR Miller, L Roisman, Q Zhang, et al.Comparison between spectral-domain and swept-source optical coherence tomography angiographic imaging of choroidal neovascularization Invest Ophthalmol Vis Sci, 58 (3) (2017), pp. 1499-1505, 10.1167/iovs.16-20969
130 EA Novais, M Adhi, EM Moult, et al.Choroidal neovascularization analyzed on ultrahigh-speed swept-source optical coherence tomography angiography compared to spectral-domain optical coherence tomography angiography Am J Ophthalmol, 164 (2016), pp. 80-88, 10.1016/j.ajo.2016.01.011
131 F Zheng, Q Zhang, EH Motulsky, et al.Comparison of neovascular lesion area measurements from different swept-source OCT angiographic scan patterns in age-related macular degeneration Invest Ophthalmol Vis Sci, 58 (12) (2017), pp. 5098-5104, 10.1167/iovs.17-22506
132 JR de Oliveira Dias, Q Zhang, JMB Garcia, et al.Natural history of subclinical neovascularization in nonexudative age-related macular degeneration using swept-source OCT angiography Ophthalmology, 125 (2) (2018), pp. 255-266, 10.1016/j.ophtha.2017.08.030
133 J Yang, Q Zhang, EH Motulsky, et al.Two-year risk of exudation in eyes with nonexudative age-related macular degeneration and subclinical neovascularization detected with swept source optical coherence tomography angiography Am J Ophthalmol, 208 (2019), pp. 1-11, 10.1016/j.ajo.2019.06.017
134 Q Zhang, A Zhang, CS Lee, et al.Projection artifact removal improves visualization and quantitation of macular neovascularization imaged by optical coherence tomography angiography Ophthalmol Retina, 1 (2) (2017), pp. 124-136, 10.1016/j.oret.2016.08.005
135 CW Wong, Y Yanagi, WK Lee, et al.Age-related macular degeneration and polypoidal choroidal vasculopathy in Asians Prog Retin Eye Res, 53 (2016), pp. 107-139, 10.1016/j.preteyeres.2016.04.002
136 A Koh, WK Lee, LJ Chen, et al.EVEREST study: efficacy and safety of verteporfin photodynamic therapy in combination with ranibizumab or alone versus ranibizumab monotherapy in patients with symptomatic macular polypoidal choroidal vasculopathy Retina, 32 (8) (2012), pp. 1453-1464, 10.1097/IAE.0b013e31824f91e8
137 K Kim, J Yang, W Feuer, et al.A comparison study of polypoidal choroidal vasculopathy imaged with indocyanine green angiography and swept-source optical coherence tomography angiography Am J Ophthalmol, 217 (2020), pp. 240-251, 10.1016/j.ajo.2020.05.017
138 Q Bo, Q Yan, M Shen, et al.Appearance of polypoidal lesions in patients with polypoidal choroidal vasculopathy using swept-source optical coherence tomographic angiography JAMA Ophthalmol, 137 (6) (2019), pp. 642-650, 10.1001/jamaophthalmol.2019.0449
139 M Shen, Q Bo, M Song, et al.Replacement of polyps with type 1 macular neovascularization in polypoidal choroidal vasculopathy imaged with swept source OCT angiography Am J Ophthalmol Case Rep, 22 (2021), Article 101057, 10.1016/j.ajoc.2021.101057
140 Q Bo, M Zhang, J Chen, et al.Progression of polypoidal lesions associated with exudative recurrence in polypoidal choroidal vasculopathy Ophthalmology (2022), 10.1016/j.ophtha.2022.09.013
141 KK Dansingani, C Balaratnasingam, J Naysan, et al.En face imaging of pachychoroid spectrum disorders with swept-source optical coherence tomography Retina, 36 (3) (2016), pp. 499-516, 10.1097/IAE.0000000000000742
142 M Shen, H Zhou, K Kim, et al.Choroidal changes in eyes with polypoidal choroidal vasculopathy after anti-VEGF therapy imaged with swept-source OCT angiography Invest Ophthalmol Vis Sci, 62 (15) (2021), p. 5, 10.1167/iovs.62.15.5
143 Y Kuroda, S Ooto, K Yamashiro, et al.Increased choroidal vascularity in central serous chorioretinopathy quantified using swept-source optical coherence tomography Am J Ophthalmol, 169 (2016), pp. 199-207, 10.1016/j.ajo.2016.06.043
144 WJ Lee, JW Lee, SH Park, et al.En face choroidal vascular feature imaging in acute and chronic central serous chorioretinopathy using swept source optical coherence tomography Br J Ophthalmol, 101 (5) (2017), pp. 580-586, 10.1136/bjophthalmol-2016-308428
145 F Sulzbacher, C Schutze, M Burgmuller, et al.Clinical evaluation of neovascular and non-neovascular chronic central serous chorioretinopathy (CSC) diagnosed by swept source optical coherence tomography angiography (SS OCTA) Graefes Arch Clin Exp Ophthalmol, 257 (8) (2019), pp. 1581-1590, 10.1007/s00417-019-04297-z
146 M Stattin, D Ahmed, J Forster, et al.Detection of secondary choroidal neovascularization in chronic central serous chorioretinopathy by swept source-optical coherence tomography angiography Acta Ophthalmol, 97 (1) (2019), pp. e135-e136, 10.1111/aos.13855
147 R Bansal, M Dogra, S Mulkutkar, et al.Optical coherence tomography angiography versus fluorescein angiography in diagnosing choroidal neovascularization in chronic central serous chorioretinopathy Indian J Ophthalmol, 67 (7) (2019), pp. 1095-1100, 10.4103/ijo.IJO_1238_18
148 M Moussa, M Leila, H Khalid, et al.Detection of silent type I choroidal neovascular membrane in chronic central serous chorioretinopathy using en face swept-source optical coherence tomography angiography J Ophthalmol, 2017 (2017), Article 6913980, 10.1155/2017/6913980
149 J Guo, W Tang, S Xu, et al.OCTA evaluation of treatment-naive flat irregular PED (FIPED)-associated CNV in chronic central serous chorioretinopathy before and after half-dose PDT Eye, 35 (10) (2021), pp. 2871-2878, 10.1038/s41433-020-01345-5
150 F Zheng, EH Motulsky, JR de Oliveira Dias, et al.OCT angiography helps distinguish between proliferative macular telangiectasia type 2 and neovascular age-related macular degeneration Ophthalmic Surg Lasers Imaging Retina, 49 (5) (2018), pp. 303-312, 10.3928/23258160-20180501-03
151 MR Thorell, Q Zhang, Y Huang, et al.Swept-source OCT angiography of macular telangiectasia type 2 Ophthalmic Surg Lasers Imaging Retina, 45 (5) (2014), pp. 369-380, 10.3928/23258160-20140909-06
152 V Kumar, D Kumawat, P KumarSwept source optical coherence tomography analysis of choroidal thickness in macular telangiectasia type 2: a case-control study Graefes Arch Clin Exp Ophthalmol, 257 (3) (2019), pp. 567-573, 10.1007/s00417-018-04215-9
153 JC Wang, I Lains, P Oellers, et al.Choroidal thickness and vascular density in macular telangiectasia type 2 using en face swept-source optical coherence tomography Br J Ophthalmol, 103 (11) (2019), pp. 1584-1589, 10.1136/bjophthalmol-2018-313414
154 J Ruiz-Medrano, JA Montero, I Flores-Moreno, et al.Myopic maculopathy: current status and proposal for a new classification and grading system (ATN) Prog Retin Eye Res, 69 (2019), pp. 80-115, 10.1016/j.preteyeres.2018.10.005
155 LH Meng, MZ Yuan, XY Zhao, et al.Wide-field swept source optical coherence tomography evaluation of posterior segment changes in highly myopic eyes Eur J Ophthalmol (2021), Article 11206721211062362, 10.1177/11206721211062362
156 H Wu, G Zhang, M Shen, et al.Assessment of choroidal vascularity and choriocapillaris blood perfusion in anisomyopic adults by SS-OCT/OCTA Invest Ophthalmol Vis Sci, 62 (1) (2021), p. 8, 10.1167/iovs.62.1.8
157 Y Dai, C Xin, Q Zhang, et al.Impact of ocular magnification on retinal and choriocapillaris blood flow quantification in myopia with swept-source optical coherence tomography angiography Quant Imag Med Surg, 11 (3) (2021), pp. 948-956, 10.21037/qims-20-1011
158 K Sayanagi, C Hara, Y Fukushima, et al.Flow pattern and perforating vessels in three different phases of myopic choroidal neovascularization seen by swept-source optical coherence tomography angiography Graefes Arch Clin Exp Ophthalmol, 259 (9) (2021), pp. 2615-2624, 10.1007/s00417-021-05134-y
159 R Agrawal, M Jain, R Khan, et al.Choroidal structural changes in sympathetic ophthalmia on swept-source optical coherence tomography Ocul Immunol Inflamm, 29 (3) (2021), pp. 537-542, 10.1080/09273948.2019.1685110
160 D Jaisankar, R Raman, HR Sharma, et al.Choroidal and retinal anatomical responses following systemic corticosteroid therapy in vogt-koyanagi-harada disease using swept-source optical coherence tomography Ocul Immunol Inflamm, 27 (2) (2019), pp. 235-243, 10.1080/09273948.2017.1332231
161 K Aggarwal, A Agarwal, A Sharma, et al.Detection of type 1 choroidal neovascular membranes using optical coherence tomography angiography in tubercular posterior uveitis Retina, 39 (8) (2019), pp. 1595-1606, 10.1097/IAE.0000000000002176
162 A Arora, A Agarwal, R Bansal, et al.Subretinal Hyperreflective Material (SHRM) as biomarker of activity in Exudative and Non- exudative inflammatory choroidal neovascularization Ocul Immunol Inflamm (2021), pp. 1-8, 10.1080/09273948.2021.1980813
163 NA Yannuzzi, SS Swaminathan, F Zheng, et al.Swept-source OCT angiography shows sparing of the choriocapillaris in multiple evanescent white dot syndrome Ophthalmic Surg Lasers Imaging Retina, 48 (1) (2017), pp. 69-74, 10.3928/23258160-20161219-10
164 SS Swaminathan, F Zheng, AR Miller, et al.Swept-source OCT angiography of multiple evanescent white dot syndrome with inflammatory retinal pigment epithelial detachment Ophthalmic Surg Lasers Imaging Retina, 49 (2) (2018), pp. 145-151, 10.3928/23258160-20180129-12
165 J Noori, Y Shi, J Yang, et al.A novel method to detect and monitor retinal vasculitis using swept-source OCT angiography Ophthalmol Retina, 5 (12) (2021), pp. 1226-1234, 10.1016/j.oret.2021.02.007
166 HL Takusagawa, A Hoguet, AK Junk, et al.Swept-source OCT for evaluating the lamina cribrosa: a report by the American academy of ophthalmology Ophthalmology, 126 (9) (2019), pp. 1315-1323, 10.1016/j.ophtha.2019.03.044
167 MM Loureiro, JR Vianna, VM Danthurebandara, et al.Visibility of optic nerve head structures with spectral-domain and swept-source optical coherence tomography J Glaucoma, 26 (9) (2017), pp. 792-797, 10.1097/IJG.0000000000000740
168 E Tsikata, AC Verticchio Vercellin, I Falkenstein, et al.Volumetric measurement of optic nerve head drusen using swept-source optical coherence tomography J Glaucoma, 26 (9) (2017), pp. 798-804, 10.1097/IJG.0000000000000707
169 J Maertz, JP Kolb, T Klein, et al.Combined in-depth, 3D, en face imaging of the optic disc, optic disc pits and optic disc pit maculopathy using swept-source megahertz OCT at 1050 nm Graefes Arch Clin Exp Ophthalmol, 256 (2) (2018), pp. 289-298, 10.1007/s00417-017-3857-9
170 WJ Lee, S Oh, YK Kim, et al.Comparison of glaucoma-diagnostic ability between wide-field swept-source OCT retinal nerve fiber layer maps and spectral-domain OCT Eye, 32 (9) (2018), pp. 1483-1492, 10.1038/s41433-018-0104-5
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构