1. ,Hangzhou,China
扫 描 看 全 文
Kai Jin, Juan Ye. Artificial intelligence and deep learning in ophthalmology: Current status and future perspectives. [J]. AOPR 2(3):100078(2022)
Kai Jin, Juan Ye. Artificial intelligence and deep learning in ophthalmology: Current status and future perspectives. [J]. AOPR 2(3):100078(2022) DOI: 10.1016/j.aopr.2022.100078.
Background,The ophthalmology field was among the first to adopt artificial intelligence (AI) in medicine. The availability of digitized ocular images and substantial data have made deep learning (DL) a popular topic.,Main text,At the moment, AI in ophthalmology is mostly used to improve disease diagnosis and assist decision-making aiming at ophthalmic diseases like diabetic retinopathy (DR), glaucoma, age-related macular degeneration (AMD), cataract and other anterior segment diseases. However, most of the AI systems developed to date are still in the experimental stages, with only a few having achieved clinical applications. There are a number of reasons for this phenomenon, including security, privacy, poor pervasiveness, trust and explainability concerns.,Conclusions,This review summarizes AI applications in ophthalmology, highlighting significant clinical considerations for adopting AI techniques and discussing the potential challenges and future directions.
Background,The ophthalmology field was among the first to adopt artificial intelligence (AI) in medicine. The availability of digitized ocular images and substantial data have made deep learning (DL) a popular topic.,Main text,At the moment, AI in ophthalmology is mostly used to improve disease diagnosis and assist decision-making aiming at ophthalmic diseases like diabetic retinopathy (DR), glaucoma, age-related macular degeneration (AMD), cataract and other anterior segment diseases. However, most of the AI systems developed to date are still in the experimental stages, with only a few having achieved clinical applications. There are a number of reasons for this phenomenon, including security, privacy, poor pervasiveness, trust and explainability concerns.,Conclusions,This review summarizes AI applications in ophthalmology, highlighting significant clinical considerations for adopting AI techniques and discussing the potential challenges and future directions.
Artificial intelligenceDeep learningOphthalmologyDiabetic retinopathyGlaucomaAge-related macular degeneration
1 B. Vasey, M. Nagendran, B. Campbell, et al.Reporting guideline for the early-stage clinical evaluation of decision support systems driven by artificial intelligence: DECIDE-AI Nat Med, 28 (5) (May 2022), pp. 924-933, 10.1038/s41591-022-01772-9
2 D.S.W. Ting, L.R. Pasquale, L. Peng, et al.Artificial intelligence and deep learning in ophthalmology Br J Ophthalmol, 103 (2) (Feb 2019), pp. 167-175, 10.1136/bjophthalmol-2018-313173
3 V. Gulshan, L. Peng, M. Coram, et al.Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs JAMA, 316 (22) (Dec 13 2016), pp. 2402-2410, 10.1001/jama.2016.17216
4 Z. Li, Y. He, S. Keel, et al.Efficacy of a deep learning system for detecting glaucomatous optic neuropathy based on color fundus photographs Ophthalmology, 125 (8) (Aug 2018), pp. 1199-1206, 10.1016/j.ophtha.2018.01.023
5 F. Grassmann, J. Mengelkamp, C. Brandl, et al.A deep learning algorithm for prediction of age-related eye disease study severity scale for age-related macular degeneration from color fundus photography Ophthalmology, 125 (9) (Sep 2018), pp. 1410-1420, 10.1016/j.ophtha.2018.02.037
6 W. Li, Y. Yang, K. ZhangDense anatomical annotation of slit-lamp images improves the performance of deep learning for the diagnosis of ophthalmic disorders Nat Biomed Eng, 4 (8) (Aug 2020), pp. 767-777, 10.1038/s41551-020-0577-y
7 H. Bogunovic, A. Montuoro, M. Baratsits, et al.Machine learning of the progression of intermediate age-related macular degeneration based on OCT imaging Invest Ophthalmol Vis Sci, 58 (6) (May 1 2017), pp. Bio141-bio150, 10.1167/iovs.17-21789
8 J. Yim, R. ChopraPredicting conversion to wet age-related macular degeneration using deep learning Nat Med. Jun, 26 (6) (2020), pp. 892-899, 10.1038/s41591-020-0867-7
9 S. Cruz Rivera, X. LiuGuidelines for clinical trial protocols for interventions involving artificial intelligence: the SPIRIT-AI extension BMJ, 26 (9) (Sep 2020), pp. 1351-1363, 10.1136/bmj.m3210
10 G.S. Collins, K.G.M. MoonsReporting of artificial intelligence prediction models Lancet (London, England), 393 (10181) (Apr 20 2019), pp. 1577-1579, 10.1016/S0140-6736(19)30037-6
11 V. Sounderajah, H. AshrafianDeveloping specific reporting guidelines for diagnostic accuracy studies assessing AI interventions: the STARD-AI Steering Group Nat Med, 26 (6) (Jun 2020), pp. 807-808, 10.1038/s41591-020-0941-1
12 C. González-Gonzalo, E.F. Thee, C.C.W. Klaver, et al.Trustworthy AI: closing the gap between development and integration of AI systems in ophthalmic practice Prog Retin Eye Res (Dec 10 2021), Article 101034, 10.1016/j.preteyeres.2021.101034
13 Y. Xie, Q.D. Nguyen, H. Hamzah, et al.Artificial intelligence for teleophthalmology-based diabetic retinopathy screening in a national programme: an economic analysis modelling study Lancet Digit Health, 2 (5) (May 2020), pp. e240-e249, 10.1016/S2589-7500(20)30060-1
14 M.D. Abràmoff, Y. Lou, A. Erginay, et al.Improved automated detection of diabetic retinopathy on a publicly available dataset through integration of deep learning Invest Ophthalmol Vis Sci, 57 (13) (Oct 1 2016), pp. 5200-5206, 10.1167/iovs.16-19964
15 R. Gargeya, T. LengAutomated identification of diabetic retinopathy using deep learning Ophthalmology, 124 (7) (Jul 2017), pp. 962-969, 10.1016/j.ophtha.2017.02.008
16 D.S.W. Ting, C.Y. Cheung, G. Lim, et al.Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multi-ethnic populations with diabetes JAMA, 318 (22) (Dec 12 2017), pp. 2211-2223, 10.1001/jama.2017.18152
17 X. Pan, K. Jin, J. Cao, et al.Multi-label classification of retinal lesions in diabetic retinopathy for automatic analysis of fundus fluorescein angiography based on deep learning Graefes Arch Clin Exp Ophthalmol, 258 (4) (Apr 2020), pp. 779-785, 10.1007/s00417-019-04575-w
18 Z. Gao, K. Jin, Y. Yan, et al.End-to-end diabetic retinopathy grading based on fundus fluorescein angiography images using deep learning Graefes Arch Clin Exp Ophthalmol, 260 (5) (May 2022), pp. 1663-1673, 10.1007/s00417-021-05503-7
19 D.S.W. Ting, C.Y. Cheung, Q. Nguyen, et al.Deep learning in estimating prevalence and systemic risk factors for diabetic retinopathy: a multi-ethnic study NPJ Digit Med, 2 (2019), p. 24, 10.1038/s41746-019-0097-x
20 A.V. Varadarajan, P. Bavishi, P. Ruamviboonsuk, et al.Predicting optical coherence tomography-derived diabetic macular edema grades from fundus photographs using deep learning Nat Commun, 11 (1) (Jan 8 2020), p. 130, 10.1038/s41467-019-13922-8
21 M.D. Abràmoff, P.T. Lavin, M. Birch, et al.Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices NPJ Digit Med, 1 (2018), p. 39, 10.1038/s41746-018-0040-6
22 V. Bellemo, Z.W. Lim, G. Lim, et al.Artificial intelligence using deep learning to screen for referable and vision-threatening diabetic retinopathy in Africa: a clinical validation study The Lancet. Digital health, 1 (1) (May 2019), pp. e35-e44, 10.1016/S2589-7500(19)30004-4
23 H. Liu, L. Li, I.M. Wormstone, et al.Development and validation of a deep learning system to detect glaucomatous optic neuropathy using fundus photographs JAMA Ophthalmol (Sep 12 2019), 10.1001/jamaophthalmol.2019.3501
24 J. Chang, J. Lee, A. Ha, et al.Explaining the rationale of deep learning glaucoma decisions with adversarial examples Ophthalmology, 128 (1) (Jan 2021), pp. 78-88, 10.1016/j.ophtha.2020.06.036
25 F.A. Medeiros, A.A. Jammal, A.C. ThompsonFrom machine to machine: an OCT-trained deep learning algorithm for objective quantification of glaucomatous damage in fundus photographs Ophthalmology, 126 (4) (Apr 2019), pp. 513-521, 10.1016/j.ophtha.2018.12.033
26 F.A. Medeiros, A.A. Jammal, E.B. MariottoniDetection of progressive glaucomatous optic nerve damage on fundus photographs with deep learning Ophthalmology (Jul 28 2020), 10.1016/j.ophtha.2020.07.045
27 Y. Xu, M. Hu, H. Liu, et al.A hierarchical deep learning approach with transparency and interpretability based on small samples for glaucoma diagnosis NPJ Digit Med, 4 (1) (Mar 11 2021), p. 48, 10.1038/s41746-021-00417-4
28 S. Sun, A. Ha, Y.K. Kim, et al.Dual-input convolutional neural network for glaucoma diagnosis using spectral-domain optical coherence tomography Br J Ophthalmol (Sep 12 2020), 10.1136/bjophthalmol-2020-316274
29 A.C. Thompson, A.A. Jammal, S.I. Berchuck, et al.Assessment of a segmentation-free deep learning algorithm for diagnosing glaucoma from optical coherence tomography scans JAMA Ophthalmol, 138 (4) (Apr 1 2020), pp. 333-339, 10.1001/jamaophthalmol.2019.5983
30 H. Fu, M. Baskaran, Y. Xu, et al.A deep learning system for automated angle-closure detection in anterior segment optical coherence tomography images Am J Ophthalmol, 203 (Jul 2019), pp. 37-45, 10.1016/j.ajo.2019.02.028
31 L.M. Zangwill, K. Chan, C. Bowd, et al.Heidelberg retina tomograph measurements of the optic disc and parapapillary retina for detecting glaucoma analyzed by machine learning classifiers Invest Ophthalmol Vis Sci, 45 (9) (Sep 2004), pp. 3144-3151, 10.1167/iovs.04-0202
32 Z. Burgansky-Eliash, G. Wollstein, T. Chu, et al.Optical coherence tomography machine learning classifiers for glaucoma detection: a preliminary study Invest Ophthalmol Vis Sci, 46 (11) (Nov 2005), pp. 4147-4152, 10.1167/iovs.05-0366
33 S. Phene, R.C. Dunn, N. Hammel, et al.Deep learning and glaucoma specialists: the relative importance of optic disc features to predict glaucoma referral in fundus photographs Ophthalmology, 126 (12) (Dec 2019), pp. 1627-1639, 10.1016/j.ophtha.2019.07.024
34 R. Asaoka, H. Murata, K. Hirasawa, et al.Using deep learning and transfer learning to accurately diagnose early-onset glaucoma from macular optical coherence tomography images Am J Ophthalmol, 198 (Feb 2019), pp. 136-145, 10.1016/j.ajo.2018.10.007
35 B.Y. Xu, M. Chiang, S. Chaudhary, et al.Deep learning classifiers for automated detection of gonioscopic angle closure based on anterior segment OCT images Am J Ophthalmol, 208 (Dec 2019), pp. 273-280, 10.1016/j.ajo.2019.08.004
36 T. Elze, L.R. Pasquale, L.Q. Shen, et al.Patterns of functional vision loss in glaucoma determined with archetypal analysis J R Soc Interface, 12 (103) (Feb 6 2015), 10.1098/rsif.2014.1118
37 J.C. Wen, C.S. Lee, P.A. Keane, et al.Forecasting future Humphrey Visual Fields using deep learning PLoS One, 14 (4) (2019), Article e0214875, 10.1371/journal.pone.0214875
38 X. Huang, K. Jin, J. Zhu, et al.A structure-related fine-grained deep learning system with diversity data for universal glaucoma visual field grading Front Med, 9 (2022), Article 832920, 10.3389/fmed.2022.832920
39 P.M. Burlina, N. Joshi, M. Pekala, et al.Automated grading of age-related macular degeneration from color fundus images using deep convolutional neural networks JAMA Ophthalmol, 135 (11) (Nov 1 2017), pp. 1170-1176, 10.1001/jamaophthalmol.2017.3782
40 Y. Peng, S. Dharssi, Q. Chen, et al.DeepSeeNet: a deep learning model for automated classification of patient-based age-related macular degeneration severity from color fundus photographs Ophthalmology, 126 (4) (Apr 2019), pp. 565-575, 10.1016/j.ophtha.2018.11.015
41 P.M. Burlina, N. Joshi, K.D. Pacheco, et al.Use of deep learning for detailed severity characterization and estimation of 5-year risk among patients with age-related macular degeneration JAMA Ophthalmol, 136 (12) (Dec 1 2018), pp. 1359-1366, 10.1001/jamaophthalmol.2018.4118
42 Q. Yan, D.E. Weeks, H. Xin, et al.Deep-learning-based prediction of late age-related macular degeneration progression Nat Mach Intell, 2 (2) (Feb 2020), pp. 141-150, 10.1038/s42256-020-0154-9
43 D.S. Kermany, M. Goldbaum, W. Cai, et al.Identifying medical diagnoses and treatable diseases by image-based deep learning Cell, 172 (5) (Feb 22 2018), pp. 1122-1131, 10.1016/j.cell.2018.02.010 e1129
44 T. Schlegl, S.M. Waldstein, H. Bogunovic, et al.Fully automated detection and quantification of macular fluid in OCT using deep learning Ophthalmology, 125 (4) (Apr 2018), pp. 549-558, 10.1016/j.ophtha.2017.10.031
45 U. Schmidt-Erfurth, W.D. Vogl, L.M. Jampol, et al.Application of automated quantification of fluid volumes to anti-VEGF therapy of neovascular age-related macular degeneration Ophthalmology, 127 (9) (Sep 2020), pp. 1211-1219, 10.1016/j.ophtha.2020.03.010
46 G. Moraes, D.J. Fu, M. Wilson, et al.Quantitative analysis of OCT for neovascular age-related macular degeneration using deep learning Ophthalmology, 128 (5) (May 2021), pp. 693-705, 10.1016/j.ophtha.2020.09.025
47 Y. Yan, K. Jin, Z. Gao, et al.Attention-based deep learning system for automated diagnoses of age-related macular degeneration in optical coherence tomography images Med Phys, 48 (9) (Sep 2021), pp. 4926-4934, 10.1002/mp.15002
48 G. Zhang, D.J. Fu, B. Liefers, et al.Clinically relevant deep learning for detection and quantification of geographic atrophy from optical coherence tomography: a model development and external validation study Lancet Digit Health, 3 (10) (Oct 2021), pp. e665-e675, 10.1016/S2589-7500(21)00134-5
49 B. Liefers, P. Taylor, A. Alsaedi, et al.Quantification of key retinal features in early and late age-related macular degeneration using deep learning Am J Ophthalmol, 226 (Jun 2021), pp. 1-12, 10.1016/j.ajo.2020.12.034
50 Z. Xu, W. Wang, J. Yang, et al.Automated diagnoses of age-related macular degeneration and polypoidal choroidal vasculopathy using bi-modal deep convolutional neural networks Br J Ophthalmol, 105 (4) (Apr 2021), pp. 561-566, 10.1136/bjophthalmol-2020-315817
51 K. Jin, Y. Yan, M. Chen, et al.Multimodal deep learning with feature level fusion for identification of choroidal neovascularization activity in age-related macular degeneration Acta Ophthalmol, 100 (2) (Mar 2022), pp. e512-e520, 10.1111/aos.14928
52 C.Y. Cheung, H. Li, E.L. Lamoureux, et al.Validity of a new computer-aided diagnosis imaging program to quantify nuclear cataract from slit-lamp photographs Invest Ophthalmol Vis Sci, 52 (3) (Mar 10 2011), pp. 1314-1319, 10.1167/iovs.10-5427
53 E. Long, J. Chen, X. Wu, et al.Artificial intelligence manages congenital cataract with individualized prediction and telehealth computing NPJ Digit Med, 3 (2020), p. 112, 10.1038/s41746-020-00319-x
54 Z. Li, J. Jiang, K. Chen, et al.Preventing corneal blindness caused by keratitis using artificial intelligence Nat Commun, 12 (1) (Jun 18 2021), p. 3738, 10.1038/s41467-021-24116-6
55 X. Ye, J. Wang, Y. Chen, et al.Automatic screening and identifying myopic maculopathy on optical coherence tomography images using deep learning Transl Vis Sci Technol, 10 (13) (Nov 1 2021), p. 10, 10.1167/tvst.10.13.10
56 T.K. Yoo, I.H. Ryu, G. Lee, et al.Adopting machine learning to automatically identify candidate patients for corneal refractive surgery NPJ Digit Med, 2 (2019), p. 59, 10.1038/s41746-019-0135-8
57 L. Wang, L. Ding, Z. Liu, et al.Automated identification of malignancy in whole-slide pathological images: identification of eyelid malignant melanoma in gigapixel pathological slides using deep learning Br J Ophthalmol, 104 (3) (Mar 2020), pp. 318-323, 10.1136/bjophthalmol-2018-313706
58 P. Burlina, W. Paul, P. Mathew, et al.Low-shot deep learning of diabetic retinopathy with potential applications to address artificial intelligence bias in retinal diagnostics and rare ophthalmic diseases JAMA Ophthalmol, 138 (10) (Oct 1 2020), pp. 1070-1077, 10.1001/jamaophthalmol.2020.3269
59 P. Burlina, W. Paul, T.Y.A. Liu, et al.Detecting anomalies in retinal diseases using generative, discriminative, and self-supervised deep learning JAMA Ophthalmology, 140 (2) (Feb 1 2022), pp. 185-189, 10.1001/jamaophthalmol.2021.5557
60 A. Diaz-Pinto, A. Colomer, V. Naranjo, et al.Retinal image synthesis and semi-supervised learning for glaucoma assessment IEEE Trans Med Imag, 38 (9) (2019), pp. 2211-2218, 10.1109/TMI.2019.2903434
61 S. Liu, J. Hong, X. Lu, et al.Joint optic disc and cup segmentation using semi-supervised conditional GANs Comput Biol Med, 115 (2019 Dec), Article 103485, 10.1016/j.compbiomed.2019.103485
62 R. Zhao, X. Chen, X. Liu, et al.Direct cup-to-disc ratio estimation for glaucoma screening via semi-supervised learning IEEE J Biomed Health Inform, 24 (4) (2020 Apr), pp. 1104-1113, 10.1109/JBHI.2019.2934477
63 M.Y.T. Yip, G. LimTechnical and imaging factors influencing performance of deep learning systems for diabetic retinopathy NPJ Digit Med, 3 (2020), p. 40, 10.1038/s41746-020-0247-1
64 K. Jin, M. Zhou, S. Wang, et al.Computer-aided diagnosis based on enhancement of degraded fundus photographs Acta Ophthalmol, 96 (3) (May 2018), pp. e320-e326, 10.1111/aos.13573
65 CONSORT-AI and SPIRIT-AI Steering GroupReporting guidelines for clinical trials evaluating artificial intelligence interventions are needed Nat Med, 25 (10) (Oct 2019), pp. 1467-1468, 10.1038/s41591-019-0603-3
66 X. Liu, S. Cruz Rivera, D. Moher, et al.Reporting guidelines for clinical trial reports for interventions involving artificial intelligence: the CONSORT-AI extension The Lancet. Digital health, 2 (10) (Oct 2020), pp. e537-e548, 10.1038/s41591-020-1034-x
67 S.C. Rivera, X. Liu, A.W. Chan, et al.Guidelines for clinical trial protocols for interventions involving artificial intelligence: the SPIRIT-AI Extension BMJ (Clinical research ed.), 370 (Sep 9 2020), p. m3210, 10.1136/bmj.m3210
68 G.S. Collins, J.B. Reitsma, D.G. Altman, et al.Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement BMJ (Jan 2015), p. 350, 10.1136/bmj.g7594
69 K.F. Schulz, D.G. Altman, D. MoherCONSORT 2010 statement: updated guidelines for reporting parallel group randomised trials PLoS Med, 7 (3) (Mar 24 2010), Article e1000251, 10.1136/bmj.c332
70 J.F. Cohen, D.A. Korevaar, D.G. Altman, et al.STARD 2015 guidelines for reporting diagnostic accuracy studies: explanation and elaboration BMJ Open, 6 (11) (Nov 14 2016), Article e012799, 10.1136/bmjopen-2016-012799
71 A.W. Chan, J.M. Tetzlaff, P.C. Gøtzsche, et al.SPIRIT 2013 explanation and elaboration: guidance for protocols of clinical trials BMJ, 346 (Jan 8 2013), Article e7586, 10.1136/bmj.e7586
72 K. Krleza-Jerić, A.W. Chan, K. Dickersin, et al.Principles for international registration of protocol information and results from human trials of health related interventions: Ottawa statement (part 1) BMJ, 330 (7497) (Apr 23 2005), pp. 956-958, 10.1136/bmj.330.7497.956
73 H. Ibrahim, X. Liu, S.C. Rivera, et al.Reporting guidelines for clinical trials of artificial intelligence interventions: the SPIRIT-AI and CONSORT-AI guidelines Trials, 22 (1) (Jan 6 2021), p. 11, 10.1186/s13063-020-04951-6
74 T.E. Tan, A. Anees, C. Chen, et al.Retinal photograph-based deep learning algorithms for myopia and a blockchain platform to facilitate artificial intelligence medical research: a retrospective multicohort study Lancet Digit Health, 3 (5) (May 2021), pp. e317-e329, 10.1016/S2589-7500(21)00055-8
75 J. He, S.L. BaxterThe practical implementation of artificial intelligence technologies in medicine Nat Med, 25 (1) (Jan 2019), pp. 30-36, 10.1038/s41591-018-0307-0
76 E.R. Dow, T.D.L. Keenan, E.M. Lad, et al.From data to deployment: the collaborative community on ophthalmic imaging roadmap for artificial intelligence in age-related macular degeneration Ophthalmology, 129 (5) (May 2022), pp. e43-e59, 10.1016/j.ophtha.2022.01.002
77 J.O. Li, H. Liu, D.S.J. Ting, et al.Digital technology, tele-medicine and artificial intelligence in ophthalmology: a global perspective Prog Retin Eye Res, 82 (May 2021), Article 100900, 10.1016/j.preteyeres.2020.100900
78 T. Ye, J. XuePsychosocial factors affecting artificial intelligence adoption in health care in China: cross-sectional study J Med Internet Res, 21 (10) (Oct 17 2019), Article e14316, 10.2196/14316
79 M.A. Gianfrancesco, S. Tamang, J. Yazdany, et al.Potential biases in machine learning algorithms using electronic health record data JAMA Intern Med, 178 (11) (Nov 1 2018), pp. 1544-1547, 10.1001/jamainternmed.2018.3763
80 E. Tom, P.A. Keane, M. Blazes, et al.Protecting data privacy in the age of AI-enabled ophthalmology Transl Vis Sci Technol, 9 (2) (Jul 2020), p. 36, 10.1167/tvst.9.2.36
81 D. Milea, R.P. NajjarArtificial intelligence to detect Papilledema from ocular fundus photographs N Engl J Med, 382 (18) (Apr 30 2020), pp. 1687-1695, 10.1056/NEJMoa1917130
0
Views
0
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution