1. ,Shandong,Qingdao,China
2. ,Qingdao,China
3. ,Shandong,Qingdao,China
4. ,Jinan,China
5. ,Weifang,China
6. ,Hangzhou,China
扫 描 看 全 文
Hongyan Liu, Jun Cheng, Xiaoyun Zhuang, et al. Genomic instability and eye diseases. [J]. AOPR 3(3):103-111(2023)
Hongyan Liu, Jun Cheng, Xiaoyun Zhuang, et al. Genomic instability and eye diseases. [J]. AOPR 3(3):103-111(2023) DOI: 10.1016/j.aopr.2023.03.002.
Background,Genetic information is stored in the bases of double-stranded DNA. However, the integrity of DNA molecules is constantly threatened by various mutagenic agents, including pollutants, ultraviolet light (UV), and medications. To counteract these environmental damages, cells have established multiple mechanisms, such as producing molecules to identify and eliminate damaged DNA, as well as reconstruct the original DNA structures. Failure or insufficiency of these mechanisms can cause genetic instability. However, the role of genome stability in eye diseases is still under-researched, despite extensive study in cancer biology.,Main text,As the eye is directly exposed to the external environment, the genetic materials of ocular cells are constantly under threat. Some of the proteins essential for DNA damage repair, such as pRb, p53, and RAD21, are also key during the ocular disease development. In this review, we discuss five ocular diseases that are associated with genomic instability. Retinoblastoma and pterygium are linked to abnormal cell cycles. Fuchs’ corneal endothelial dystrophy and age-related macular degeneration are related to the accumulation of DNA damage caused by oxidative damage and UV. The mutation of the subunit of the cohesin complex during eye development is linked to sclerocornea.,Conclusions,Failure of DNA damage detection or repair leads to increased genomic instability. Deciphering the role of genomic instability in ocular diseases can lead to the development of new treatments and strategies, such as protecting vulnerable cells from risk factors or intensifying damage to unwanted cells.
Background,Genetic information is stored in the bases of double-stranded DNA. However, the integrity of DNA molecules is constantly threatened by various mutagenic agents, including pollutants, ultraviolet light (UV), and medications. To counteract these environmental damages, cells have established multiple mechanisms, such as producing molecules to identify and eliminate damaged DNA, as well as reconstruct the original DNA structures. Failure or insufficiency of these mechanisms can cause genetic instability. However, the role of genome stability in eye diseases is still under-researched, despite extensive study in cancer biology.,Main text,As the eye is directly exposed to the external environment, the genetic materials of ocular cells are constantly under threat. Some of the proteins essential for DNA damage repair, such as pRb, p53, and RAD21, are also key during the ocular disease development. In this review, we discuss five ocular diseases that are associated with genomic instability. Retinoblastoma and pterygium are linked to abnormal cell cycles. Fuchs’ corneal endothelial dystrophy and age-related macular degeneration are related to the accumulation of DNA damage caused by oxidative damage and UV. The mutation of the subunit of the cohesin complex during eye development is linked to sclerocornea.,Conclusions,Failure of DNA damage detection or repair leads to increased genomic instability. Deciphering the role of genomic instability in ocular diseases can lead to the development of new treatments and strategies, such as protecting vulnerable cells from risk factors or intensifying damage to unwanted cells.
Genomic instabilityOcular diseasesRetinoblastomaCorneaPterygium
1 D Hanahan, RA WeinbergHallmarks of cancer: the next generation Cell, 144 (2011), pp. 646-674, 10.1016/j.cell.2011.02.013
2 B Vogelstein, N Papadopoulos, VE Velculescu, et al.Cancer genome landscapes Science, 339 (2013), pp. 1546-1558, 10.1126/science.1235122
3 A Tubbs, A. NussenzweigEndogenous DNA damage as a source of genomic instability in cancer Cell, 168 (2017), pp. 644-656, 10.1016/j.cell.2017.01.002
4 Y Jiang, JC Yam, WK ChuPoly ADP ribose polymerase inhibitor olaparib targeting microhomology end joining in retinoblastoma protein defective cancer: analysis of the retinoblastoma cell-killing effects by olaparib after inducing double-strand breaks Int J Mol Sci, 22 (2021), 10.3390/ijms221910687
5 H Dimaras, TW Corson, D. Cobrinik, et al.Retinoblastoma Nat Rev Dis Prim, 1 (2015), Article 15021, 10.1038/nrdp.2015.21
6 H Dimaras, K Kimani, EA Dimba, et al.Retinoblastoma Lancet (London, England), 379 (2012), pp. 1436-1446, 10.1016/s0140-6736(11)61137-9
7 A Naumova, C. SapienzaThe genetics of retinoblastoma, revisited Am J Hum Genet, 54 (1994), pp. 264-273
8 C Rodriguez-Galindo, DB Orbach, D. VanderVeenRetinoblastoma Pediatr Clin, 62 (2015), pp. 201-223, 10.1016/j.pcl.2014.09.014
9 MC de Jong, WA Kors, P de Graaf, et al.Trilateral retinoblastoma: a systematic review and meta-analysis Lancet Oncol, 15 (2014), pp. 1157-1167, 10.1016/s1470-2045(14)70336-5
10 P Temming, M Arendt, A Viehmann, et al.How eye-preserving therapy affects long-term overall survival in heritable retinoblastoma survivors J Clin Oncol : official journal of the American Society of Clinical Oncology, 34 (2016), pp. 3183-3188, 10.1200/jco.2015.65.4012
11 M Chinnam, DW GoodrichRB1, development, and cancer Curr Top Dev Biol, 94 (2011), pp. 129-169, 10.1016/b978-0-12-380916-2.00005-x
12 WH Lee, JY Shew, FD Hong, et al.The retinoblastoma susceptibility gene encodes a nuclear phosphoprotein associated with DNA binding activity Nature, 329 (1987), pp. 642-645, 10.1038/329642a0
13 J Sage, ML ClearyGenomics: the path to retinoblastoma Nature, 481 (2012), pp. 269-270, 10.1038/481269a
14 ME Ewen, HK Sluss, CJ Sherr, et al.Functional interactions of the retinoblastoma protein with mammalian D-type cyclins Cell, 73 (1993), pp. 487-497, 10.1016/0092-8674(93)90136-e
15 AG Knudson Jr.Mutation and cancer: statistical study of retinoblastoma Proc Natl Acad Sci U S A, 68 (1971), pp. 820-823, 10.1073/pnas.68.4.820
16 JR Valverde, J Alonso, I Palacios, et al.RB1 gene mutation up-date, a meta-analysis based on 932 reported mutations available in a searchable database BMC Genet, 6 (2005), p. 53, 10.1186/1471-2156-6-53
17 RA Kleinerman, MA Tucker, RE Tarone, et al.Risk of new cancers after radiotherapy in long-term survivors of retinoblastoma: an extended follow-up J Clin Oncol : official journal of the American Society of Clinical Oncology, 23 (2005), pp. 2272-2279, 10.1200/JCO.2005.05.054
18 XL Xu, Y Fang, TC Lee, et al.Retinoblastoma has properties of a cone precursor tumor and depends upon cone-specific MDM2 signaling Cell, 137 (2009), pp. 1018-1031, 10.1016/j.cell.2009.03.051
19 JA Maat-Kievit, D Oepkes, NG Hartwiget al. A large retinoblastoma detected in a fetus at 21 weeks of gestation Prenat Diagn, 13 (1993), pp. 377-384, 10.1002/pd.1970130510
20 XL Xu, HP Singh, L Wang, et al.Rb suppresses human cone-precursor-derived retinoblastoma tumours Nature, 514 (2014), pp. 385-388, 10.1038/nature13813
21 MR Roberts, A Hendrickson, CR McGuire, et al.Retinoid X receptor (gamma) is necessary to establish the S-opsin gradient in cone photoreceptors of the developing mouse retina Invest Ophthalmol Vis Sci, 46 (2005), pp. 2897-2904, 10.1167/iovs.05-0093
22 P Ozenne, B Eymin, E Brambilla, et al.The ARF tumor suppressor: structure, functions and status in cancer Int J Cancer, 127 (2010), pp. 2239-2247, 10.1002/ijc.25511
23 D Chen, R Opavsky, M Pacal, et al.Rb-mediated neuronal differentiation through cell-cycle-independent regulation of E2f3a PLoS Biol, 5 (2007), p. e179, 10.1371/journal.pbio.0050179
24 PJ Iaquinta, JA. LeesLife and death decisions by the E2F transcription factors Curr Opin Cell Biol, 19 (2007), pp. 649-657, 10.1016/j.ceb.2007.10.006
25 H Dimaras, V Khetan, W Halliday, et al.Loss of RB1 induces non-proliferative retinoma: increasing genomic instability correlates with progression to retinoblastoma Hum Mol Genet, 17 (2008), pp. 1363-1372, 10.1093/hmg/ddn024
26 KH To, S Pajovic, BL Gallie, et al.Regulation of p14ARF expression by miR-24: a potential mechanism compromising the p53 response during retinoblastoma development BMC Cancer, 12 (2012), p. 69, 10.1186/1471-2407-12-69
27 TW Corson, BL. GallieOne hit, two hits, three hits, more? Genomic changes in the development of retinoblastoma Gene Chromosome Cancer, 46 (2007), pp. 617-634, 10.1002/gcc.20457
28 DE Rushlow, BM Mol, JY Kennett, et al.Characterisation of retinoblastomas without RB1 mutations: genomic, gene expression, and clinical studies Lancet Oncol, 14 (2013), pp. 327-334, 10.1016/S1470-2045(13)70045-7
29 IE Kooi, BM Mol, AC Moll, et al.Loss of photoreceptorness and gain of genomic alterations in retinoblastoma reveal tumor progression EBioMedicine, 2 (2015), pp. 660-670, 10.1016/j.ebiom.2015.06.022
30 KG Ewens, TR Bhatti, KA Moran, et al.Phosphorylation of pRb: mechanism for RB pathway inactivation in MYCN-amplified retinoblastoma Cancer Med, 6 (2017), pp. 619-630, 10.1002/cam4.1010
31 N Wu, D Jia, B Bates, et al.A mouse model of MYCN-driven retinoblastoma reveals MYCN-independent tumor reemergence J Clin Invest, 127 (2017), pp. 888-898, 10.1172/jci88508
32 S Jansky, AK Sharma, V Körber, et al.Single-cell transcriptomic analyses provide insights into the developmental origins of neuroblastoma Nat Genet, 53 (2021), pp. 683-693, 10.1038/s41588-021-00806-1
33 M Kramer, D Ribeiro, M Arsenian-Henriksson, et al.Proliferation and survival of embryonic sympathetic neuroblasts by MYCN and activated ALK signaling J Neurosci : the official journal of the Society for Neuroscience, 36 (2016), pp. 10425-10439, 10.1523/jneurosci.0183-16.2016
34 JT Zhang, ZH Weng, KS Tsang, et al.MycN is critical for the maintenance of human embryonic stem cell-derived neural crest stem cells PLoS One, 11 (2016), Article e0148062, 10.1371/journal.pone.0148062
35 X Hu, W Zheng, Q Zhu, et al.Increase in DNA damage by MYCN knockdown through regulating nucleosome organization and chromatin state in neuroblastoma Front Genet, 10 (2019), p. 684, 10.3389/fgene.2019.00684
36 D Saengwimol, P Chittavanich, N Laosillapacharoen, et al.Silencing of the long noncoding RNA MYCNOS1 suppresses activity of MYCN-amplified retinoblastoma without RB1 mutation Invest Ophthalmol Vis Sci, 61 (2020), p. 8, 10.1167/iovs.61.14.8
37 EM O’Brien, JL Selfe, AS Martins, et al.The long non-coding RNA MYCNOS-01 regulates MYCN protein levels and affects growth of MYCN-amplified rhabdomyosarcoma and neuroblastoma cells BMC Cancer, 18 (2018), p. 217, 10.1186/s12885-018-4129-8
38 CH Coschi, FA DickChromosome instability and deregulated proliferation: an unavoidable duo Cell Mol Life Sci : CMLS, 69 (2012), pp. 2009-2024, 10.1007/s00018-011-0910-4
39 M. EstellerEpigenetics in cancer N Engl J Med, 358 (2008), pp. 1148-1159, 10.1056/NEJMra072067
40 CE Isaac, SM Francis, AL Martens, et al.The retinoblastoma protein regulates pericentric heterochromatin Mol Cell Biol, 26 (2006), pp. 3659-3671, 10.1128/MCB.26.9.3659-3671.2006
41 A Dahiya, MR Gavin, RX Luo, et al.Role of the LXCXE binding site in Rb function Mol Cell Biol, 20 (2000), pp. 6799-6805, 10.1128/MCB.20.18.6799-6805.2000
42 O Stevaux, NJ DysonA revised picture of the E2F transcriptional network and RB function Curr Opin Cell Biol, 14 (2002), pp. 684-691, 10.1016/s0955-0674(02)00388-5
43 CE Isaac, SM Francis, AL Martens, et al.The retinoblastoma protein regulates pericentric heterochromatin Mol Cell Biol, 26 (2006), pp. 3659-3671, 10.1128/mcb.26.9.3659-3671.2006
44 AL Manning, SA Yazinski, B Nicolay, et al.Suppression of genome instability in pRB-deficient cells by enhancement of chromosome cohesion Mol Cell, 53 (2014), pp. 993-1004, 10.1016/j.molcel.2014.01.032
45 MS Longworth, A Herr, JY Ji, et al.RBF1 promotes chromatin condensation through a conserved interaction with the Condensin II protein dCAP-D3 Genes Dev, 22 (2008), pp. 1011-1024, 10.1101/gad.1631508
46 MT Pickering, TF KowalikRb inactivation leads to E2F1-mediated DNA double-strand break accumulation Oncogene, 25 (2006), pp. 746-755, 10.1038/sj.onc.1209103
47 M Shrivastav, LP De Haro, JA NickoloffRegulation of DNA double-strand break repair pathway choice Cell Res, 18 (2008), pp. 134-147, 10.1038/cr.2007.111
48 R Cook, G Zoumpoulidou, MT Luczynski, et al.Direct involvement of retinoblastoma family proteins in DNA repair by non-homologous end-joining Cell Rep, 10 (2015), pp. 2006-2018, 10.1016/j.celrep.2015.02.059
49 R Velez-Cruz, S Manickavinayaham, AK Biswas, et al.RB localizes to DNA double-strand breaks and promotes DNA end resection and homologous recombination through the recruitment of BRG1 Genes Dev, 30 (2016), pp. 2500-2512, 10.1101/gad.288282.116
50 Y Jiang, JC Yam, CC Tham, et al.RB regulates DNA double strand break repair pathway choice by mediating CtIP dependent end resection Int J Mol Sci (2020), p. 21, 10.3390/ijms21239176
51 JW Wei, K Huang, C Yang, et al.Non-coding RNAs as regulators in epigenetics (Review) Oncol Rep, 37 (2017), pp. 3-9, 10.3892/or.2016.5236
52 P Chai, R Jia, R Jia, et al.Dynamic chromosomal tuning of a novel GAU1 lncing driver at chr12p13.32 accelerates tumorigenesis Nucleic Acids Res, 46 (2018), pp. 6041-6056, 10.1093/nar/gky366
53 L Sheng, J Wu, X Gong, et al.SP1-induced upregulation of lncRNA PANDAR predicts adverse phenotypes in retinoblastoma and regulates cell growth and apoptosis in vitro and in vivo Gene, 668 (2018), pp. 140-145, 10.1016/j.gene.2018.05.065
54 X He, P Chai, F Li, et al.A novel LncRNA transcript, RBAT1, accelerates tumorigenesis through interacting with HNRNPL and cis-activating E2F3 Mol Cancer, 19 (2020), p. 115, 10.1186/s12943-020-01232-3
55 H Ni, P Chai, J Yu, et al.LncRNA CANT1 suppresses retinoblastoma progression by repellinghistone methyltransferase in PI3Kγ promoter Cell Death Dis, 11 (2020), p. 306, 10.1038/s41419-020-2524-y
56 C Shigeyasu, M Yamada, Y Mizuno, et al.Clinical features of anterior segment dysgenesis associated with congenital corneal opacities Cornea, 31 (2012), pp. 293-298, 10.1097/ICO.0b013e31820cd2ab
57 A Kanai, TC Wood, FM Polack, et al.The fine structure of sclerocornea Invest Ophthalmol, 10 (1971), pp. 687-694
58 DH Ma, LK Yeh, HC Chen, et al.Epithelial phenotype in total sclerocornea Mol Vis, 20 (2014), pp. 468-479
59 LM Reis, EA Sorokina, L Dudakova, et al.Comprehensive phenotypic and functional analysis of dominant and recessive FOXE3 alleles in ocular developmental disorders Hum Mol Genet, 30 (2021), pp. 1591-1606, 10.1093/hmg/ddab142
60 M Ali, B Buentello-Volante, M McKibbin, et al.Homozygous FOXE3 mutations cause non-syndromic, bilateral, total sclerocornea, aphakia, microphthalmia and optic disc coloboma Mol Vis, 16 (2010), pp. 1162-1168
61 PR Blackburn, CJ Zepeda-Mendoza, TM Kruisselbrink, et al.Variable expressivity of syndromic BMP4-related eye, brain, and digital anomalies: a review of the literature and description of three new cases Eur J Hum Genet, 27 (2019), pp. 1379-1388, 10.1038/s41431-019-0423-4
62 NK Ragge, B Lorenz, A Schneider, et al.SOX2 anophthalmia syndrome Am J Med Genet, 135 (2005), pp. 1-7, 10.1002/ajmg.a.30642 discussion 8
63 VA Voronina, EA Kozhemyakina, CM O’Kernick, et al.Mutations in the human RAX homeobox gene in a patient with anophthalmia and sclerocornea Hum Mol Genet, 13 (2004), pp. 315-322, 10.1093/hmg/ddh025
64 B Deml, LM Reis, E Lemyre, et al.Novel mutations in PAX6, OTX2 and NDP in anophthalmia, microphthalmia and coloboma Eur J Hum Genet, 24 (2016), pp. 535-541, 10.1038/ejhg.2015.155
65 BN Zhang, TCY Chan, POS Tam, et al.A cohesin subunit variant identified from a peripheral sclerocornea pedigree Dis Markers, 2019 (2019), Article 8781524, 10.1155/2019/8781524
66 LC Krab, I Marcos-Alcalde, M Assaf, et al.Delineation of phenotypes and genotypes related to cohesin structural protein RAD21 Hum Genet, 139 (2020), pp. 575-592, 10.1007/s00439-020-02138-2
67 J Liu, ID KrantzCornelia de Lange syndrome, cohesin, and beyond Clin Genet, 76 (2009), pp. 303-314, 10.1111/j.1399-0004.2009.01271.x
68 T Wygnanski-Jaffe, J Shin, E Perruzza, et al.Ophthalmologic findings in the Cornelia de Lange syndrome J AAPOS, 9 (2005), pp. 407-415, 10.1016/j.jaapos.2005.05.010
69 K Nasmyth, CH. HaeringCohesin: its roles and mechanisms Annu Rev Genet, 43 (2009), pp. 525-558, 10.1146/annurev-genet-102108-134233
70 Y Zhang, YD. FangProgresses on the structure and function of cohesin Yi Chuan, 42 (2020), pp. 57-72, 10.16288/j.yczz.19-288
71 SB Buonomo, RK Clyne, J Fuchs, et al.Disjunction of homologous chromosomes in meiosis I depends on proteolytic cleavage of the meiotic cohesin Rec8 by separin Cell, 103 (2000), pp. 387-398, 10.1016/s0092-8674(00)00131-8
72 RP Birkenbihl, S. SubramaniCloning and characterization of rad21 an essential gene of Schizosaccharomyces pombe involved in DNA double-strand-break repair Nucleic Acids Res, 20 (1992), pp. 6605-6611, 10.1093/nar/20.24.6605
73 H Xu, K Balakrishnan, J Malaterre, et al.Rad21-cohesin haploinsufficiency impedes DNA repair and enhances gastrointestinal radiosensitivity in mice PLoS One, 5 (2010), Article e12112, 10.1371/journal.pone.0012112
74 J Wang, H Zhao, J Yu, et al.MiR-320b/RAD21 axis affects hepatocellular carcinoma radiosensitivity to ionizing radiation treatment through DNA damage repair signaling Cancer Sci, 112 (2021), pp. 575-588, 10.1111/cas.14751
75 C Michaelis, R Ciosk, K. NasmythCohesins: chromosomal proteins that prevent premature separation of sister chromatids Cell, 91 (1997), pp. 35-45, 10.1016/s0092-8674(01)80007-6
76 S Hauf, IC Waizenegger, JM PetersCohesin cleavage by separase required for anaphase and cytokinesis in human cells Science, 293 (2001), pp. 1320-1323, 10.1126/science.1061376
77 F Wu, S Lee, M Schumacher, et al.Differential gene expression patterns of the developing and adult mouse cornea compared to the lens and tendon Exp Eye Res, 87 (2008), pp. 214-225, 10.1016/j.exer.2008.06.001
78 BN Zhang, TCB Wong, YWY Yip, et al.A sclerocornea-associated RAD21 variant induces corneal stroma disorganization Exp Eye Res, 185 (2019), Article 107687, 10.1016/j.exer.2019.06.001
79 BN Zhang, Y Liu, Q Yang, et al.rad21 is involved in corneal stroma development by regulating neural crest migration Int J Mol Sci, 21 (2020), 10.3390/ijms21207807
80 Y Kim, Z Shi, H Zhang, et al.Human cohesin compacts DNA by loop extrusion Science, 366 (2019), pp. 1345-1349, 10.1126/science.aaz4475
81 IF Davidson, B Bauer, D Goetz, et al.DNA loop extrusion by human cohesin Science, 366 (2019), pp. 1338-1345, 10.1126/science.aaz3418
82 JA Weiner, X Wang, JC Tapia, et al.Gamma protocadherins are required for synaptic development in the spinal cord Proceed Nat Acad Sci USA, 102 (2005), pp. 8-14, 10.1073/pnas.0407931101
83 RS BradleyNeural crest development in Xenopus requires Protocadherin 7 at the lateral neural crest border Mech Dev, 149 (2018), pp. 41-52, 10.1016/j.mod.2018.01.002
84 NC JoyceProliferative capacity of the corneal endothelium Prog Retin Eye Res, 22 (2003), pp. 359-389, 10.1016/s1350-9462(02)00065-4
85 E. FuchsDystrophia epithelialis corneae. albrecht von graefes archiv für ophthalmologie (1910)
86 H Elhalis, B Azizi, UV JurkunasFuchs endothelial corneal dystrophy Ocul Surf, 8 (2010), pp. 173-184, 10.1016/s1542-0124(12)70232-x
87 MA Minear, YJ Li, J Rimmler, et al.Genetic screen of African Americans with Fuchs endothelial corneal dystrophy Mol Vis, 19 (2013), pp. 2508-2516
88 S Ong Tone, V Kocaba, M Bohm, et al.Fuchs endothelial corneal dystrophy: the vicious cycle of Fuchs pathogenesis Prog Retin Eye Res, 80 (2021), p. 100863, 10.1016/j.preteyeres.2020.100863
89 M.D. Louttit, L.J. Kopplin, R.P. Igo Jr., et al.A multicenter study to map genes for Fuchs endothelial corneal dystrophy: baseline characteristics and heritability Cornea, 31 (2012), pp. 26-35, 10.1097/ICO.0b013e31821c9b8f
90 J. Zhang, C.N.J. McGhee, D.V. PatelThe molecular basis of fuchs' endothelial corneal dystrophy Mol Diagn Ther, 23 (2019), pp. 97-112, 10.1007/s40291-018-0379-z
91 M.O. Price, J.S. Mehta, U.V. Jurkunas, F.W. Price Jr.Corneal endothelial dysfunction: evolving understanding and treatment options Prog Retin Eye Res, 82 (2021), Article 100904, 10.1016/j.preteyeres.2020.100904
92 U.V. Jurkunas, M.S. Bitar, T. Funaki, B. AziziEvidence of oxidative stress in the pathogenesis of fuchs endothelial corneal dystrophy Am J Pathol, 177 (2010), pp. 2278-2289, 10.2353/ajpath.2010.100279
93 D.R. JohnsSeminars in medicine of the beth Israel hospital, boston. Mitochondrial DNA and disease N Engl J Med, 333 (1995), pp. 638-644, 10.1056/nejm199509073331007
94 H. SiesOxidative stress: oxidants and antioxidants Exp Physiol, 82 (1997), pp. 291-295, 10.1113/expphysiol.1997.sp004024
95 V.N. Reddy, E. Kasahara, M. Hiraoka, L.R. Lin, Y.S. HoEffects of variation in superoxide dismutases (SOD) on oxidative stress and apoptosis in lens epithelium Exp Eye Res, 79 (2004), pp. 859-868, 10.1016/j.exer.2004.04.005
96 I. Banmeyer, C. Marchand, A. Clippe, B. KnoopsHuman mitochondrial peroxiredoxin 5 protects from mitochondrial DNA damages induced by hydrogen peroxide FEBS Lett, 579 (2005), pp. 2327-2333, 10.1016/j.febslet.2005.03.027
97 P. Czarny, E. Kasprzak, M. Wielgorski, et al.DNA damage and repair in Fuchs endothelial corneal dystrophy Mol Biol Rep, 40 (2013), pp. 2977-2983, 10.1007/s11033-012-2369-2
98 J.D. Gottsch, A.L. Bowers, E.H. Margulies, et al.Serial analysis of gene expression in the corneal endothelium of Fuchs' dystrophy Invest Ophthalmol Vis Sci, 44 (2003), pp. 594-599, 10.1167/iovs.02-0300
99 A.Y. Shih, D.A. Johnson, G. Wong, et al.Coordinate regulation of glutathione biosynthesis and release by Nrf2-expressing glia potently protects neurons from oxidative stress J Neurosci : the official journal of the Society for Neuroscience, 23 (2003), pp. 3394-3406, 10.1523/jneurosci.23-08-03394.2003
100 C. Sarnicola, A.V. Farooq, K. ColbyFuchs endothelial corneal dystrophy: update on pathogenesis and future directions Eye Contact Lens, 45 (2019), pp. 1-10, 10.1097/ICL.0000000000000469
101 C. Liu, T. Miyajima, G. Melangath, et al.Ultraviolet A light induces DNA damage and estrogen-DNA adducts in Fuchs endothelial corneal dystrophy causing females to be more affected Proceed Nat Acad Sci USA, 117 (2020), pp. 573-583, 10.1073/pnas.1912546116
102 T. Miyajima, G. Melangath, S. Zhu, et al.Loss of NQO1 generates genotoxic estrogen-DNA adducts in fuchs endothelial corneal dystrophy Free Radic Biol Med, 147 (2020), pp. 69-79, 10.1016/j.freeradbiomed.2019.12.014
103 Q. Wang, S. Dou, B. Zhang, et al.Heterogeneity of human corneal endothelium implicates lncRNA NEAT1 in Fuchs endothelial corneal dystrophy Mol Ther Nucleic Acids, 27 (2022), pp. 880-893, 10.1016/j.omtn.2022.01.005
104 S. Manickavinayaham, R. Velez-Cruz, A.K. Biswas, J. Chen, R. Guo, D.G. JohnsonThe E2F1 transcription factor and RB tumor suppressor moonlight as DNA repair factors Cell Cycle, 19 (2020), pp. 2260-2269, 10.1080/15384101.2020.1801190
105 A. González-Magaña, F.J. BlancoHuman PCNA structure, function and interactions Biomolecules, 10 (2020), 10.3390/biom10040570
106 N. Di Girolamo, R.K. Kumar, M.T. Coroneo, D. WakefieldUVB-mediated induction of interleukin-6 and -8 in pterygia and cultured human pterygium epithelial cells Invest Ophthalmol Vis Sci, 43 (2002), pp. 3430-3437
107 D.T. Tan, A.S. Lim, H.S. Goh, D.R. SmithAbnormal expression of the p53 tumor suppressor gene in the conjunctiva of patients with pterygium Am J Ophthalmol, 123 (1997), pp. 404-405, 10.1016/s0002-9394(14)70141-2
108 L. Liu, J. Wu, J. Geng, Z. Yuan, D. HuangGeographical prevalence and risk factors for pterygium: a systematic review and meta-analysis BMJ Open, 3 (2013), Article e003787, 10.1136/bmjopen-2013-003787
109 D.J. Moran, F.C. HollowsPterygium and ultraviolet radiation: a positive correlation Br J Ophthalmol, 68 (1984), pp. 343-346, 10.1136/bjo.68.5.343
110 C.A. Ramirez, M. Pérez-Martinot, D. Gil-Huayanay, D. Urrunaga-Pastor, V.A. Benites-ZapataOcular exposure to particulate matter and development of pterygium: a case-control study Int J Occup Environ Med, 9 (2018), pp. 163-169, 10.15171/ijoem.2018.1319
111 D.T. Tan, W.Y. Tang, Y.P. Liu, H.S. Goh, D.R. SmithApoptosis and apoptosis related gene expression in normal conjunctiva and pterygium Br J Ophthalmol, 84 (2000), pp. 212-216, 10.1136/bjo.84.2.212
112 S.R. Karukonda, H.W. Thompson, R.W. Beuerman, et al.Cell cycle kinetics in pterygium at three latitudes Br J Ophthalmol, 79 (1995), pp. 313-317, 10.1136/bjo.79.4.313
113 H.C. Kau, C.C. Tsai, C.F. Lee, et al.Increased oxidative DNA damage, 8-hydroxydeoxy- guanosine, in human pterygium Eye, 20 (2006), pp. 826-831, 10.1038/sj.eye.6702064
114 Y.Y. Tsai, Y.W. Cheng, H. Lee, F.J. Tsai, S.H. Tseng, K.C. ChangP53 gene mutation spectrum and the relationship between gene mutation and protein levels in pterygium Mol Vis, 11 (2005), pp. 50-55
115 D. Reisman, J.W. McFadden, G. LuLoss of heterozygosity and p53 expression in Pterygium Cancer Lett, 206 (2004), pp. 77-83, 10.1016/j.canlet.2003.10.026
116 A.M. Cimpean, M.P. Sava, M. RaicaDNA damage in human pterygium: one-shot multiple targets Mol Vis, 19 (2013), pp. 348-356
117 O. Weinstein, G. Rosenthal, H. Zirkin, T. Monos, T. Lifshitz, S. ArgovOverexpression of p53 tumor suppressor gene in pterygia Eye, 16 (2002), pp. 619-621, 10.1038/sj.eye.6700150
118 T. Riley, E. Sontag, P. Chen, A. LevineTranscriptional control of human p53-regulated genes Nat Rev Mol Cell Biol, 9 (2008), pp. 402-412, 10.1038/nrm2395
119 T. Mummenbrauer, F. Janus, B. Muller, L. Wiesmuller, W. Deppert, F. Grossep53 Protein exhibits 3'-to-5' exonuclease activity Cell, 85 (1996), pp. 1089-1099, 10.1016/s0092-8674(00)81309-4
120 D.C. AltieriThe molecular basis and potential role of survivin in cancer diagnosis and therapy Trends Mol Med, 7 (2001), pp. 542-547, 10.1016/s1471-4914(01)02243-2
121 C. Maxia, M.T. Perra, P. Demurtas, et al.Expression of survivin protein in pterygium and relationship with oxidative DNA damage J Cell Mol Med, 12 (2008), pp. 2372-2380, 10.1111/j.1582-4934.2008.00256.x
122 K. Subbaramaiah, N. Altorki, W.J. Chung, J.R. Mestre, A. Sampat, A.J. DannenbergInhibition of cyclooxygenase-2 gene expression by p53 J Biol Chem, 274 (1999), pp. 10911-10915, 10.1074/jbc.274.16.10911
123 C.C. Chiang, Y.W. Cheng, C.L. Lin, et al.Cyclooxygenase 2 expression in pterygium Mol Vis, 13 (2007), pp. 635-638
124 D. Liu, C. Peng, Z. Jiang, L. TaoRelationship between expression of cyclooxygenase 2 and neovascularization in human pterygia Oncotarget, 8 (2017), pp. 105630-105636, 10.18632/oncotarget.22351
125 W. Chen, Q. Tang, M.S. Gonzales, et al.Role of p38 MAP kinases and ERK in mediating ultraviolet-B induced cyclooxygenase-2 gene expression in human keratinocytes Oncogene, 20 (2001), pp. 3921-3926, 10.1038/sj.onc.1204530
126 W.K. Chu, H.L. Choi, A.K. Bhat, V. JhanjiPterygium: new insights Eye, 34 (2020), pp. 1047-1050, 10.1038/s41433-020-0786-3
127 R. Klein, T. Peto, A. Bird, et al.The epidemiology of age-related macular degeneration Am J Ophthalmol, 137 (2004), pp. 486-495, 10.1016/j.ajo.2003.11.069
128 C.K. Mahendra, L.T.H. Tan, P. Pusparajah, et al.Detrimental effects of UVB on retinal pigment epithelial cells and its role in age-related macular degeneration Oxid Med Cell Longev, 2020 (2020), Article 1904178, 10.1155/2020/1904178
129 S. Yang, J. Zhou, D. LiFunctions and diseases of the retinal pigment epithelium Front Pharmacol, 12 (2021), Article 727870, 10.3389/fphar.2021.727870
130 R.A. Williams, B.L. Brody, R.G. Thomas, et al.The psychosocial impact of macular degeneration Archives of ophthalmology (Chicago, Ill : 1960), 116 (1998), pp. 514-520, 10.1001/archopht.116.4.514 1960
131 M.C. Marazita, A. Dugour, M.D. Marquioni-Ramella, et al.Oxidative stress-induced premature senescence dysregulates VEGF and CFH expression in retinal pigment epithelial cells: implications for Age-related Macular Degeneration Redox Biol, 7 (2016), pp. 78-87, 10.1016/j.redox.2015.11.011
132 A.P. Schuch, N.C. Moreno, N.J. Schuch, et al.Sunlight damage to cellular DNA: focus on oxidatively generated lesions Free Radic Biol Med, 107 (2017), pp. 110-124, 10.1016/j.freeradbiomed.2017.01.029
133 A.L. Wang, T.J. Lukas, M. Yuan, A.H. NeufeldIncreased mitochondrial DNA damage and down-regulation of DNA repair enzymes in aged rodent retinal pigment epithelium and choroid Mol Vis, 14 (2008), pp. 644-651
134 H. Lin, H. Xu, F.Q. Liang, et al.Mitochondrial DNA damage and repair in RPE associated with aging and age-related macular degeneration Invest Ophthalmol Vis Sci, 52 (2011), pp. 3521-3529, 10.1167/iovs.10-6163
135 J.P. Szaflik, K. Janik-Papis, E. Synowiec, et al.DNA damage and repair in age-related macular degeneration Mutat Res, 669 (2009), pp. 169-176, 10.1016/j.mrfmmm.2009.06.008
136 C. Chen, M. Cano, J.J. Wang, et al.Role of unfolded protein response dysregulation in oxidative injury of retinal pigment epithelial cells Antioxidants Redox Signal, 20 (2014), pp. 2091-2106, 10.1089/ars.2013.5240
137 T.J. Heesterbeek, L. Lores-Motta, C.B. Hoyng, et al.Risk factors for progression of age-related macular degeneration Ophthalmic Physiol Opt, 40 (2020), pp. 140-170, 10.1111/opo.12675
138 W.A. Pryor, D.F. Church, M.D. Evans, et al.A comparison of the free radical chemistry of tobacco-burning cigarettes and cigarettes that only heat tobacco Free Radic Biol Med, 8 (1990), pp. 275-279, 10.1016/0891-5849(90)90075-t
139 A. Woodell, B. RohrerA mechanistic review of cigarette smoke and age-related macular degeneration Adv Exp Med Biol, 801 (2014), pp. 301-307, 10.1007/978-1-4614-3209-8_38
140 D.G. Yanbaeva, M.A. Dentener, E.C. Creutzberg, et al.Systemic effects of smoking Chest, 131 (2007), pp. 1557-1566, 10.1378/chest.06-2179
141 J. Esparza-Gordillo, J.M. Soria, A. Buil, et al.Genetic and environmental factors influencing the human factor H plasma levels Immunogenetics, 56 (2004), pp. 77-82, 10.1007/s00251-004-0660-7
142 N.S. Bora, B. Matta, V.V. Lyzogubov, et al.Relationship between the complement system, risk factors and prediction models in age-related macular degeneration Mol Immunol, 63 (2015), pp. 176-183, 10.1016/j.molimm.2014.07.012
143 D.A. Schaumberg, S.E. Hankinson, Q. Guo, et al.A prospective study of 2 major age-related macular degeneration susceptibility alleles and interactions with modifiable risk factors Archives of ophthalmology (Chicago, Ill, 125 (2007), pp. 55-62, 10.1001/archopht.125.1.55 1960
0
Views
0
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution