浏览全部资源
扫码关注微信
1. Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases,Hangzhou,China,310009
2. Department of Pediatrics, No. 903 Hospital of PLA Joint Logistic Support Force,Hangzhou,China,310013
Published:2024,
扫 描 看 全 文
Zeen Lv, Su Li, Guixiang Zeng, et al. Recent progress of nanomedicine in managing dry eye disease. [J]. AOPR 4(1):23-31(2024)
Zeen Lv, Su Li, Guixiang Zeng, et al. Recent progress of nanomedicine in managing dry eye disease. [J]. AOPR 4(1):23-31(2024) DOI: 10.1016/j.aopr.2024.01.008.
BackgroundDry eye disease (DED) is a commonly reported ocular complaint that has garnered significant attention in recent research. The global occurrence of DED ranges from 5% to 50%
impacting a substantial proportion of individuals worldwide with increasing frequency. Although topical administration remains the mainstream drug delivery method for ocular diseases
it suffers from drawbacks such as low bioavailability
rapid drug metabolism
and frequent administration requirements. Fortunately
the advancements in nanomedicine offer effective solutions to address the aforementioned issues and provide significant assistance in the treatment of DED.Main textDED is considered a multifactorial disease of the ocular surface and tear film
in which the integrity of tear film function and structure plays a crucial role in maintaining the homeostasis of the ocular surface. The conventional treatment for DED involves the utilization of artificial tear products
cyclosporin
corticosteroids
mucin secretagogues
and nonsteroidal anti-inflammatory drugs. Furthermore
nanomedicine is presently a significant field of study
with numerous clinical trials underway for various nanotherapeutics including nanoemulsions
nanosuspensions
liposomes
and micelles. Notably
some of these innovative nanoformulations have already received FDA approval as novel remedies for DED
and the advancement of nanomedicine is poised to offer enhanced prospects to solve the shortcomings of existing treatments for DED partially.ConclusionsThis article provides an overview of the latest advancements in nanomedicine for DED treatment
while the field of DED treatment is expected to witness a remarkable breakthrough shortly with the development of nanomedicine
bringing promising prospects for patients worldwide suffering conditions.
Dry eye diseaseNanoparticlesDrug deliveryNanomedicineOcular surface
1 J.D. Nelson, J.P. Craig, E.K. Akpek, et al.TFOS DEWS II introduction Ocul Surf, 15 (3) (2017), pp. 269-275 http://10.1016/j.jtos.2017.05.005
2 A. Nguyen, A. Kolluru, T. Beglarian Dry eye diseaseA review of anti-inflammatory therapies Taiwan J Ophthalmol, 13 (1) (2023), pp. 3-12 http://10.4103/2211-5056.369606
3 C. Belmonte, J.J. Nichols, S.M. Cox, et al.TFOS DEWS II pain and sensation report Ocul Surf, 15 (3) (2017), pp. 404-437 http://10.1016/j.jtos.2017.05.002
4 E.M. MessmerThe pathophysiology, diagnosis, and treatment of dry eye disease Dtsch Arztebl Int, 112 (5) (2015), pp. 71-81 quiz 82 http://10.3238/arztebl.2015.0071
5 K. Tsubota, S.C. Pflugfelder, Z. Liu, et al.Defining dry eye from a clinical perspective Int J Mol Sci, 21 (23) (2020) http://10.3390/ijms21239271
6 F. Stapleton, M. Alves, V.Y. Bunya, et al.TFOS DEWS II epidemiology report Ocul Surf, 15 (3) (2017), pp. 334-365 http://10.1016/j.jtos.2017.05.003
7 J.A.P. Gomes, D.T. Azar, C. Baudouin, et al.TFOS DEWS II iatrogenic report Ocul Surf, 15 (3) (2017), pp. 511-538 http://10.1016/j.jtos.2017.05.004
8 T.Z. Wang, X.X. Liu, S.Y. Wang, et al.Engineering advanced drug delivery systems for dry eye: a review Bioengineering (Basel), 10 (1) (2022) http://10.3390/bioengineering10010053
9 H. Han, S. Li, M. Xu, et al.Polymer- and lipid-based nanocarriers for ocular drug delivery: current status and future perspectives Adv Drug Deliv Rev, 196 (2023), Article 114770 http://10.1016/j.addr.2023.114770
10 C. Yang, J. Yang, A. Lu, et al.Nanoparticles in ocular applications and their potential toxicity Front Mol Biosci, 9 (2022), Article 931759 http://10.3389/fmolb.2022.931759
11 M.D.P. Willcox, P. Argüeso, G.A. Georgiev, et al.TFOS DEWS II tear film report Ocul Surf, 15 (3) (2017), pp. 366-403 http://10.1016/j.jtos.2017.03.006
12 A. Olżyńska, A. Wizert, M. Štefl, et al.Mixed polar-nonpolar lipid films as minimalistic models of Tear Film Lipid Layer: a Langmuir trough and fluorescence microscopy study Biochim Biophys Acta Biomembr, 1862 (9) (2020), Article 183300 http://10.1016/j.bbamem.2020.183300
13 S. MasoudiBiochemistry of human tear film: a review Exp Eye Res, 220 (2022), Article 109101, 10.1016/j.exer.2022.109101
14 I.K. GipsonDistribution of mucins at the ocular surface Exp Eye Res, 78 (3) (2004), pp. 379-388 http://10.1016/s0014-4835(03)00204-5
15 C. Baudouin, M. Rolando, J.M. Benitez Del Castillo, et al.Reconsidering the central role of mucins in dry eye and ocular surface diseases Prog Retin Eye Res, 71 (2019), pp. 68-87 http://10.1016/j.preteyeres.2018.11.007
16 S.C. Pflugfelder, M.E. SternBiological functions of tear film Exp Eye Res, 197 (2020), Article 108115 http://10.1016/j.exer.2020.108115
17 A. Mandal, V. Gote, D. Pal, et al.Ocular pharmacokinetics of a topical ophthalmic nanomicellar solution of cyclosporine (Cequa®) for dry eye disease Pharm Res (N Y), 36 (2) (2019), p. 36 http://10.1007/s11095-018-2556-5
18 M.E. Stern, R.W. Beuerman, R.I. Fox, et al.The pathology of dry eye: the interaction between the ocular surface and lacrimal glands Cornea, 17 (6) (1998), pp. 584-589 http://10.1097/00003226-199811000-00002
19 M.E. Stern, J. Gao, K.F. Siemasko, et al.The role of the lacrimal functional unit in the pathophysiology of dry eye Exp Eye Res, 78 (3) (2004), pp. 409-416 http://10.1016/j.exer.2003.09.003
20 M.E. Johnson, P.J. MurphyChanges in the tear film and ocular surface from dry eye syndrome Prog Retin Eye Res, 23 (4) (2004), pp. 449-474 http://10.1016/j.preteyeres.2004.04.003
21 S.C. Pflugfelder, C.S. de PaivaThe pathophysiology of dry eye disease: what we know and future directions for research Ophthalmology, 124 (11s) (2017), pp. S4-s13 http://10.1016/j.ophtha.2017.07.010
22 D.Q. Li, L. Luo, Z. Chen, et al.JNK and ERK MAP kinases mediate induction of IL-1beta, TNF-alpha and IL-8 following hyperosmolar stress in human limbal epithelial cells Exp Eye Res, 82 (4) (2006), pp. 588-596 http://10.1016/j.exer.2005.08.019
23 V.L. Perez, S.C. Pflugfelder, S. Zhang, et al.Lifitegrast, a novel integrin antagonist for treatment of dry eye disease Ocul Surf, 14 (2) (2016), pp. 207-215 http://10.1016/j.jtos.2016.01.001
24 S. Goyal, S.K. Chauhan, R. DanaBlockade of prolymphangiogenic vascular endothelial growth factor C in dry eye disease Arch Ophthalmol, 130 (1) (2012), pp. 84-89 http://10.1001/archophthalmol.2011.266
25 A.J. Bron, C.S. de Paiva, S.K. Chauhan, et al.TFOS DEWS II pathophysiology report Ocul Surf, 15 (3) (2017), pp. 438-510 http://10.1016/j.jtos.2017.05.011
26 C.S. De Paiva, A.L. Villarreal, R.M. Corrales, et al.Dry eye-induced conjunctival epithelial squamous metaplasia is modulated by interferon-gamma Invest Ophthalmol Vis Sci, 48 (6) (2007), pp. 2553-2560 http://10.1167/iovs.07-0069
27 C.S. De Paiva, S. Chotikavanich, S.B. Pangelinan, et al.IL-17 disrupts corneal barrier following desiccating stress Mucosal Immunol, 2 (3) (2009), pp. 243-253 http://10.1038/mi.2009.5
28 L.M. Periman, V.L. Perez, D.R. Saban, et al.The immunological basis of dry eye disease and current topical treatment options J Ocul Pharmacol Therapeut, 36 (3) (2020), pp. 137-146 http://10.1089/jop.2019.0060
29 S. Li, Z. Lu, Y. Huang, et al.Anti-oxidative and anti-inflammatory micelles: break the dry eye vicious cycle Adv Sci (Weinh), 9 (17) (2022), Article e2200435 http://10.1002/advs.202200435
30 V.L. Perez, M.E. Stern, S.C. PflugfelderInflammatory basis for dry eye disease flares Exp Eye Res, 201 (2020), Article 108294 http://10.1016/j.exer.2020.108294
31 C. Baudouin, E.M. Messmer, P. Aragona, et al.Revisiting the vicious circle of dry eye disease: a focus on the pathophysiology of meibomian gland dysfunction Br J Ophthalmol, 100 (3) (2016), pp. 300-306 http://10.1136/bjophthalmol-2015-307415
32 M. Labetoulle, J.M. Benitez-Del-Castillo, S. Barabino, et al.Artificial tears: biological role of their ingredients in the management of dry eye disease Int J Mol Sci, 23 (5) (2022) http://10.3390/ijms23052434
33 N. Nagai, H. OtakeNovel drug delivery systems for the management of dry eye Adv Drug Deliv Rev, 191 (2022), Article 114582 http://10.1016/j.addr.2022.114582
34 G.M. KeatingDiquafosol ophthalmic solution 3%: a review of its use in dry eye Drugs, 75 (8) (2015), pp. 911-922 http://10.1007/s40265-015-0409-7
35 M. Nakamura, T. ImanakaA Sakamoto Diquafosol ophthalmic solution for dry eye treatment Adv Ther, 29 (7) (2012), pp. 579-589 http://10.1007/s12325-012-0033-9
36 Y. Zhang, Y. Qi, X. Xie, F. ZhangThe effect of 3% diquafosol on the improvement of ocular surface post cataract surgery: a meta-analysis for time of intervention Adv Ophthalmol Pract Res, 2 (3) (2022), Article 100063 http://10.1016/j.aopr.2022.100063
37 S. Kase, T. Shinohara, M. KaseHistological observation of goblet cells following topical rebamipide treatment of the human ocular surface: a case report Exp Ther Med, 9 (2) (2015), pp. 456-458 http://10.3892/etm.2014.2108
38 S.A. Gaballa, U.B. Kompella, O. Elgarhy, et al.Corticosteroids in ophthalmology: drug delivery innovations, pharmacology, clinical applications, and future perspectives Drug Deliv Transl Res, 11 (3) (2021), pp. 866-893 http://10.1007/s13346-020-00843-z
39 P. Marsh, S.C. PflugfelderTopical nonpreserved methylprednisolone therapy for keratoconjunctivitis sicca in Sjögren syndrome Ophthalmology, 106 (4) (1999), pp. 811-816 http://10.1016/s0161-6420(99)90171-9
40 P. Prabhasawat, S.C. TsengFrequent association of delayed tear clearance in ocular irritation Br J Ophthalmol, 82 (6) (1998), pp. 666-675 http://10.1136/bjo.82.6.666
41 C.A. Cutolo, S. Barabino, C. Bonzano, C.E. TraversoThe use of topical corticosteroids for treatment of dry eye syndrome Ocul Immunol Inflamm, 27 (2) (2019), pp. 266-275 http://10.1080/09273948.2017.1341988
42 G. Russell, R. Graveley, J. Seid, et al.Mechanisms of action of cyclosporine and effects on connective tissues Semin Arthritis Rheum, 21 (6 Suppl 3) (1992), pp. 16-22 http://10.1016/0049-0172(92)90009-3
43 S. Matsuda, S. KoyasuMechanisms of action of cyclosporine Immunopharmacology, 47 (2-3) (2000), pp. 119-125 http://10.1016/s0162-3109(00)00192-2
44 O. Levy, A. Labbé, V. Borderie, et al.[Topical cyclosporine in ophthalmology: pharmacology and clinical indications] J Fr Ophtalmol, 39 (3) (2016), pp. 292-307 http://10.1016/j.jfo.2015.11.008
45 C.S. de Paiva, S.C. Pflugfelder, S.M. Ng, E.K. AkpekTopical cyclosporine A therapy for dry eye syndrome Cochrane Database Syst Rev, 9 (9) (2019), Article Cd010051 http://10.1002/14651858.CD010051.pub2
46 S.C. Pflugfelder, R.M. Corrales, T. C S de PaivaHelper cytokines in dry eye disease Exp Eye Res, 117 (2013), pp. 118-125 http://10.1016/j.exer.2013.08.013
47 E.J. Holland, J. Luchs, P.M. Karpecki, et al.Lifitegrast for the treatment of dry eye disease: results of a phase III, randomized, double-masked, placebo-controlled trial (OPUS-3) Ophthalmology, 124 (1) (2017), pp. 53-60 http://10.1016/j.ophtha.2016.09.025
48 G.M. KeatingLifitegrast ophthalmic solution 5%: a review in dry eye disease Drugs, 77 (2) (2017), pp. 201-208 http://10.1007/s40265-016-0681-1
49 R.D. Bachu, P. Chowdhury, Z.H.F. Al-Saedi, et al.Ocular drug delivery barriers-role of nanocarriers in the treatment of anterior segment ocular diseases Pharmaceutics, 10 (1) (2018) http://10.3390/pharmaceutics10010028
50 S. Awwad, A.H.A. Mohamed Ahmed, G. Sharma, et al.Principles of pharmacology in the eye Br J Pharmacol, 174 (23) (2017), pp. 4205-4223 http://10.1111/bph.14024
51 N.A. Abdul Nasir, P. Agarwal, R. Agarwal, et al.Intraocular distribution of topically applied hydrophilic and lipophilic substances in rat eyes Drug Deliv, 23 (8) (2016), pp. 2765-2771 http://10.3109/10717544.2015.1077292
52 M.J. Mitchell, M.M. Billingsley, R.M. Haley, et al.Engineering precision nanoparticles for drug delivery Nat Rev Drug Discov, 20 (2) (2021), pp. 101-124 http://10.1038/s41573-020-0090-8
53 S. Wadhwa, R Paliwal, S.R. Paliwal, S.P. VyasNanocarriers in ocular drug delivery: an update review Curr Pharmaceut Des, 15 (23) (2009), pp. 2724-2750 http://10.2174/138161209788923886
54 N. Hoshyar, S. Gray, H. Han, G. BaoThe effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction Nanomedicine (Lond), 11 (6) (2016), pp. 673-692 http://10.2217/nnm.16.5
55 A. Albanese, P.S. Tang, W.C. ChanThe effect of nanoparticle size, shape, and surface chemistry on biological systems Annu Rev Biomed Eng, 14 (2012), pp. 1-16, 10.1146/annurev-bioeng-071811-150124
56 R. Duncan, L. IzzoDendrimer biocompatibility and toxicity Adv Drug Deliv Rev, 57 (15) (2005), pp. 2215-2237 http://10.1016/j.addr.2005.09.019
57 A. Dhull, C. Yu, A.H. Wilmoth, et al.Dendrimers in corneal drug delivery: recent developments and translational opportunities Pharmaceutics, 15 (6) (2023) http://10.3390/pharmaceutics15061591
58 A. Saovapakhiran, A. D'Emanuele, D. Attwood, J. PennySurface modification of PAMAM dendrimers modulates the mechanism of cellular internalization Bioconjugate Chem, 20 (4) (2009), pp. 693-701 http://10.1021/bc8002343
59 H. Lin, Y. Liu, S.P. Kambhampati, et al.Subconjunctival dendrimer-drug therapy for the treatment of dry eye in a rabbit model of induced autoimmune dacryoadenitis Ocul Surf, 16 (4) (2018), pp. 415-423 http://10.1016/j.jtos.2018.05.004
60 P. Daull, F. Lallemand, J.S. GarrigueBenefits of cetalkonium chloride cationic oil-in-water nanoemulsions for topical ophthalmic drug delivery J Pharm Pharmacol, 66 (4) (2014), pp. 531-541 http://10.1111/jphp.12075
61 B. Jurišić Dukovski, M. Juretić, D. Bračko, et al.Functional ibuprofen-loaded cationic nanoemulsion: development and optimization for dry eye disease treatment Int J Pharm, 576 (2020), Article 118979 http://10.1016/j.ijpharm.2019.118979
62 R. Deshmukh, D.S.J. Ting, A. Elsahn, et al.Real-world experience of using ciclosporin-A 0.1% in the management of ocular surface inflammatory diseases Br J Ophthalmol, 106 (8) (2022), pp. 1087-1092 http://10.1136/bjophthalmol-2020-317907
63 G.W. Oliverio, R. Spinella, E.I. Postorino, et al.Safety and tolerability of an eye drop based on 0.6% povidone-iodine nanoemulsion in dry eye patients J Ocul Pharmacol Therapeut, 37 (2) (2021), pp. 90-96 http://10.1089/jop.2020.0085
64 H.S. Kim, T.I. Kim, J.H. Kim, et al.Evaluation of clinical efficacy and safety of a novel cyclosporin A nanoemulsion in the treatment of dry eye syndrome J Ocul Pharmacol Therapeut, 33 (7) (2017), pp. 530-538 http://10.1089/jop.2016.0164
65 A. Bose, D. Roy Burman, B. Sikdar, P Patra NanomicellesTypes, properties and applications in drug delivery IET Nanobiotechnol, 15 (1) (2021), pp. 19-27 http://10.1049/nbt2.12018
66 J. Xiang, Y. Shen, Y. Zhang, et al.Multipotent poly(tertiary amine-oxide) micelles for efficient cancer drug delivery Adv Sci (Weinh), 9 (12) (2022), Article e2200173 http://10.1002/advs.202200173
67 A. Mandal, R. Bisht, I.D. Rupenthal, A.K. MitraPolymeric micelles for ocular drug delivery: from structural frameworks to recent preclinical studies J Contr Release, 248 (2017), pp. 96-116 http://10.1016/j.jconrel.2017.01.012
68 C. Di Tommaso, F. Valamanesh, F. Miller, et al.A novel cyclosporin a aqueous formulation for dry eye treatment: in vitro and in vivo evaluation Invest Ophthalmol Vis Sci, 53 (4) (2012), pp. 2292-2299 http://10.1167/iovs.11-8829
69 Y. Yu, D. Chen, Y. Li, et al.Improving the topical ocular pharmacokinetics of lyophilized cyclosporine A-loaded micelles: formulation, in vitro and in vivo studies Drug Deliv, 25 (1) (2018), pp. 888-899 http://10.1080/10717544.2018.1458923
70 A. Vaneev, V. Tikhomirova, N. Chesnokova, et al.Nanotechnology for topical drug delivery to the anterior segment of the eye Int J Mol Sci, 22 (22) (2021) http://10.3390/ijms222212368
71 C. Guo, Y. Zhang, Z. Yang, et al.Nanomicelle formulation for topical delivery of cyclosporine A into the cornea: in vitro mechanism and in vivo permeation evaluation Sci Rep, 5 (1) (2015), Article 12968 http://10.1038/srep12968
72 K. Cholkar, B.C. Gilger, A.K. Mitra TopicalAqueous, clear cyclosporine formulation design for anterior and posterior ocular delivery Transl Vis Sci Technol, 4 (3) (2015), p. 1 http://10.1167/tvst.4.3.1
73 X. Wang, S. Wang, Y. ZhangAdvance of the application of nano-controlled release system in ophthalmic drug delivery Drug Deliv, 23 (8) (2016), pp. 2897-2901 http://10.3109/10717544.2015.1116025
74 Z. Qamar, F.F. Qizilbash, M.K. Iqubal, et al.Nano-based drug delivery system: recent strategies for the treatment of ocular disease and future perspective Recent Pat Drug Deliv Formulation, 13 (4) (2019), pp. 246-254 http://10.2174/1872211314666191224115211
75 C. Luschmann, W. Herrmann, O. Strauss, et al.Ocular delivery systems for poorly soluble drugs: an in-vivo evaluation Int J Pharm, 455 (1-2) (2013), pp. 331-337 http://10.1016/j.ijpharm.2013.07.002
76 D. Guimarães, A. Cavaco-Paulo, E. NogueiraDesign of liposomes as drug delivery system for therapeutic applications Int J Pharm, 601 (2021), Article 120571 http://10.1016/j.ijpharm.2021.120571
77 I.P. Kaur, A. Garg, A.K. Singla, D. AggarwalVesicular systems in ocular drug delivery: an overview Int J Pharm, 269 (1) (2004), pp. 1-14, 10.1016/j.ijpharm.2003.09.016
78 J.S. Garrigue, M. Amrane, M.O. Faure, et al.Relevance of lipid-based products in the management of dry eye disease J Ocul Pharmacol Therapeut, 33 (9) (2017), pp. 647-661 http://10.1089/jop.2017.0052
79 J.P. Craig, C. Purslow, P.J. Murphy, J.S. WolffsohnEffect of a liposomal spray on the pre-ocular tear film Contact Lens Anterior Eye, 33 (2) (2010), pp. 83-87 http://10.1016/j.clae.2009.12.007
80 L. Vigo, C. Senni, M. Pellegrini, et al.Effects of a new formulation of multiple-action tear substitute on objective ocular surface parameters and ocular discomfort symptoms in patients with dry eye disease Ophthalmol Ther, 11 (4) (2022), pp. 1441-1447 http://10.1007/s40123-022-00518-7
81 S. Shah, V. Dhawan, R. Holm, et al.Liposomes: advancements and innovation in the manufacturing process Adv Drug Deliv Rev, 154–155 (2020), pp. 102-122 http://10.1016/j.addr.2020.07.002
82 J. Akbari, M. Saeedi, F. Ahmadi, et al.Solid lipid nanoparticles and nanostructured lipid carriers: a review of the methods of manufacture and routes of administration Pharmaceut Dev Technol, 27 (5) (2022), pp. 525-544 http://10.1080/10837450.2022.2084554
83 G. Tan, J. Li, Y. Song, et al.Phenylboronic acid-tethered chondroitin sulfate-based mucoadhesive nanostructured lipid carriers for the treatment of dry eye syndrome Acta Biomater, 99 (2019), pp. 350-362, 10.1016/j.actbio.2019.08.035
84 R. Zhu, W. Chen, D. Gu, et al.Chondroitin sulfate and L-Cysteine conjugate modified cationic nanostructured lipid carriers: pre-corneal retention, permeability, and related studies for dry eye treatment Int J Biol Macromol, 228 (2023), pp. 624-637 http://10.1016/j.ijbiomac.2022.12.238
85 P. Niamprem, P. Teapavarapruk, S.P. Srinivas, W. TiyaboonchaiImpact of nanostructured lipid carriers as an artificial tear film in a rabbit evaporative dry eye model Cornea, 38 (4) (2019), pp. 485-491 http://10.1097/ico.0000000000001867
86 F.S.C. Rodrigues, A. Campos, J. Martins, et al.Emerging trends in nanomedicine for improving ocular drug delivery: light-responsive nanoparticles, mesoporous silica nanoparticles, and contact lenses ACS Biomater Sci Eng, 6 (12) (2020), pp. 6587-6597 http://10.1021/acsbiomaterials.0c01347
87 J.H. Park, H. Jeong, J. Hong, et al.The effect of silica nanoparticles on human corneal epithelial cells Sci Rep, 6 (2016), Article 37762 http://10.1038/srep37762
88 Y. Huang, P. Li, R. Zhao, et al.Silica nanoparticles: biomedical applications and toxicity Biomed Pharmacother, 151 (2022), Article 113053 http://10.1016/j.biopha.2022.113053
89 F. Masse, M. Ouellette, G. Lamoureux, E. BoisselierGold nanoparticles in ophthalmology Med Res Rev, 39 (1) (2019), pp. 302-327 http://10.1002/med.21509
90 Y.J. Li, L.J. Luo, S.G. Harroun, et al.Synergistically dual-functional nano eye-drops for simultaneous anti-inflammatory and anti-oxidative treatment of dry eye disease Nanoscale, 11 (12) (2019), pp. 5580-5594 http://10.1039/c9nr00376b
91 M.E. Wechsler, H.K.H. Jocelyn Dang, S.P. Simmonds, et al.Electrostatic and covalent assemblies of anionic hydrogel-coated gold nanoshells for detection of dry eye biomarkers in human tears Nano Lett, 21 (20) (2021), pp. 8734-8740 http://10.1021/acs.nanolett.1c02941
92 W. Cui, Y. Wang, C. Luo, et al.Nanoceria for ocular diseases: recent advances and future prospects Materials Today Nano, 18 (2022), Article 100218, 10.1016/j.mtnano.2022.100218
93 M.B. Khorrami, H.R. Sadeghnia, A. Pasdar, et al.Antioxidant and toxicity studies of biosynthesized cerium oxide nanoparticles in rats Int J Nanomed, 14 (2019), pp. 2915-2926 http://10.2147/ijn.S194192
94 F. Yu, M. Zheng, A.Y. Zhang, Z. HanA cerium oxide loaded glycol chitosan nano-system for the treatment of dry eye disease J Contr Release, 315 (2019), pp. 40-54 http://10.1016/j.jconrel.2019.10.039
95 H. Zou, H. Wang, B. Xu, et al.Regenerative cerium oxide nanozymes alleviate oxidative stress for efficient dry eye disease treatment Regen Biomater, 9 (2022), Article rbac070 10.1093/rb/rbac070
96 J.A. ClaytonDry eye N Engl J Med, 378 (23) (2018), pp. 2212-2223 http://10.1056/NEJMra1407936
0
Views
0
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution